Основные свойства функции.
1. Четность и нечетность Функция называется четной, если Монотонность (возрастание, убывание) Пример: 42.Последовательности. Числовая последовательность. Предел числовой последовательности. Число .Натуральный логарифм. Числовая последовательности и ее предел. Функция f(x) называется функцией целочисленного аргумента, если множество значений x, для которых она определена, является множеством всех натуральных чисел1, 2, 3,… Примером функции целочисленного аргумента может служить сумма n первых чисел натурального ряда. В данном случае
Числовой последовательностью называется бесконечное множество чисел (1) следующих одно за другим в определенном порядке и построенных по определенному закону, с помощью которого задается как функция целочисленного аргумента, т.е. . Число А называется пределом последовательности (1), если для любого существует число , такое, что при выполняется неравенство . Если число А есть предел последовательности (1), то пишут
Числовая последовательность не может иметь более одного предела. Последовательность, имеющая предел, называется сходящейся.
Для сходящихся последовательностей имеют место теоремы:
если . Предел числовой последовательности. Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу a при увеличении порядкового номера n. В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение. Это определение означает, что a есть предел числовой последовательности, если её общий член неограниченно приближается к a при возрастании n. Геометрически это значит, что для любого > 0 можно найти такое число N, что начиная с n > N все члены последовательности расположены внутри интервала (a -, a +). Последовательность, имеющая предел, называется сходящейся; в противном случае – расходящейся. Последовательность называется ограниченной, если существует такое число M, что | un | M для всех n. Возрастающая или убывающая последовательность называется монотонной.
43.Предел функции. Предел функции в точке. Односторонние пределы. Предел функции при . Односторонние пределы В определении предела функции считается, что х стремится к x0 любым способом: оставаясь меньшим, чем x0 (слева от х0), большим, чем хо (справа от хо), или колеблясь около точки x0. Бывают случаи, когда способ приближения аргумента х к хо существенно влияет на значение придела функции. Поэтому вводят понятия односторонних пределов. Число А1 называется пределом функции у=ƒ(х) слева в точке хо, если для любого число ε>0 существует число δ=δ(ε)> 0 такое, что при х є (х0-δ;xo), выполняется неравенство |ƒ(х)-А|<ε. Предел слева записывают так: limƒ(х)=А при х–>х0-0 или коротко: ƒ(хо-0)=А1 (обозначение Дирихле) (см. рис. 111). Аналогично определяется предел функции справа, запишем его с помощью символов:
Коротко предел справа обозначают ƒ(хо+0)=А. Пределы функции слева и справа называются односторонними пределами. Очевидно, если существует , то существуют и оба односторонних предела, причем А=А1=А2. Справедливо и обратное утверждение: если существуют оба предела ƒ(х0-0) и ƒ(х0+0) и они равны, то существует предел и А=ƒ(х0-0). Если же А1¹А2, то етот придел не существует. Предел функции при х ® ∞ Пусть функция у=ƒ(х) определена в промежутке (-∞;∞). Число А называется пределом функции ƒ(х) при х→ ∞, если для любого положительного числа ε существует такое число М=М()>0, что при всех х, удовлетворяющих неравенству |х|>М выполняется неравенство |ƒ(х)-А|<ε. Коротко это определение можно записать так: Геометрический смысл этого определения таков: для "ε>0 $ М>0, что при х є(-∞; -М) или х є(М; +∞) соответствующие значения функции ƒ(х) попадают в ε-окрестность точки А, т. е. точки графика лежат в полосе шириной 2ε, ограниченной прямыми у=А+ε и у=А-ε (см. рис. 112).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|