Имитационное моделирование
Управление в современном мире становится все более трудным делом, поскольку организационная структура нашего общества усложняется. Эта сложность объясняется характером взаимоотношений между различными элементами наших организаций и физическими системами, с которыми они взаимодействуют. Хотя эта сложность существовала давно, мы только сейчас начинаем понимать ее значение. Теперь мы сознаем, что изменение одной из характеристик системы может легко привести к изменениям или создать потребность в изменениях в других частях системы; в связи с этим получила развитие методология системного анализа, которая была призвана помочь руководителям и инженерам изучать и осмысливать последствия таких изменений. В частности, с появлением электронных вычислительных машин одним из наиболее важных и полезных орудий анализа структуры сложных процессов и систем стало имитационное моделирование. Имитировать, согласно словарю Вебстера значит «вообразить, постичь суть явления, не прибегая экспериментам на реальном объекте». По существу, каждая модель или представление вещи есть форма имитации. Имитационное моделирование является весьма широким и недостаточно четко определенным понятием, имеющим очень большое значение для лиц, ответственных за проектирование и функционирование систем. Имитационное моделирование есть процесс конструирования модели реальной системы и постановки экспериментов на этой модели с целью либо понять поведение системы, либо оценить (в рамках ограничений, накладываемых некоторым критерием или совокупностью критериев) различные стратегии, обеспечивающие функционирование данной системы. Таким образом, процесс имитационного моделирования мы понимаем как процесс, включающий и конструирование модели, и аналитическое применение модели для изучения некоторой проблемы. Под моделью реальной системы мы понимаем представление группы объектов или идей в некоторой форме, отличной от их реального воплощения; отсюда термин «реальный» используется в смысле «существующий или способный принять одну из форм существования». Следовательно, системы, существующие еще только на бумаге или находящиеся в стадии планирования, могут моделироваться так же, как и действующие системы.
Согласно нашему определению, термин «имитационное моделирование» может также охватывать стохастические модели и эксперименты с использованием метода Монте-Карло. Иными словами, входы модели и (или) функциональные соотношения между различными ее компонентами могут содержать, а могут и не содержать элемент случайности, подчиняющийся вероятностным законам. Более того, мы не ограничиваем наше определение имитационного моделирования лишь экспериментами, проводимыми с помощью машинных моделей. Много полезных видов имитационного моделирования может быть осуществлено и осуществляется всего лишь при помощи листа бумаги и пера или при помощи настольного вычислителя. Имитационное моделирование является поэтому экспериментальной и прикладной методологией, имеющей целью: · описать поведение систем; · построить теории и гипотезы, которые могут объяснить наблюдаемое поведение; · использовать эти теории для предсказания будущего поведения системы, т. е. тех воздействий, которые могут быть вызваны изменениями в системе или изменениями способов ее функционирования. В отличие от большинства технических методов, которые могут быть классифицированы в соответствии с научными дисциплинами, в которые они уходят своими корнями (например, с физикой или химией), имитационное моделирование применимо в любой отрасли науки. Хотя имитационное моделирование является чрезвычайно ценным и полезным методом решения сложных задач, этот метод, конечно, не панацея для решения всех проблем управления. Разработка и применение имитационных моделей все еще в большей степени искусство, нежели наука. Следовательно, как и в других видах искусства, успех или неудача определяется не столько методом, сколько тем, как он применяется. И хотя имитационное моделирование — это искусство, им могут легко овладеть те, кто наделен изобретательностью, интуицией и находчивостью.
Структура имитационных моделей Прежде чем начать разработку модели, необходимо понять, что собой представляют структурные элементы, из которых она строится. Хотя математическая или физическая структура модели может быть очень сложной, основы ее построения весьма просты. В самом общем виде структуру модели мы можем представить математически в виде E = f(xi, yi), где Е — результат действия системы; xi — переменные и параметры, которыми мы можем управлять; yi — переменные и параметры, которыми мы управлять не можем; f — функциональная зависимость между xi и yi, которая определяет величину Е. Столь явное и чрезмерное упрощение полезно лишь тем, что оно показывает зависимость функционирования системы как от контролируемых нами, так и от неконтролируемых переменных. Почти каждая модель представляет собой, вообще говоря, некоторую комбинацию таких составляющих, как · компоненты, · переменные, · параметры, · функциональные зависимости, · ограничения, · целевые функции. Под компонентами мы понимаем составные части, которые при соответствующем объединении образуют систему. Иногда мы считаем компонентами также элементы системы или ее подсистемы. Например, в модели ракеты или космического корабля компонентами могут быть такие объекты, как система тяги, система наведения, система управления, несущая конструкция и т. п. Модель города может состоять из таких компонентов, как система образования, система здравоохранения, транспортная система и т. п. В экономической модели компонентами могут быть отдельные фирмы, отдельные потребители и т. п. Система определяется как группа, или совокупность объектов, объединенных некоторой формой регулярного взаимодействия или взаимозависимости для выполнения заданной функции. Компоненты суть объекты, образующие изучаемую систему.
Параметры суть величины, которые оператор, работающий на модели, может выбирать произвольно, в отличие от переменных, которые могут принимать только значения, определяемые видом данной функции. В модели системы мы различаем переменные двух видов — экзогенные и эндогенные. Экзогенные переменные называются также входными; это значит, что они порождаются вне системы или являются результатом воздействия внешних причин. Эндогенными переменными называются переменные, возникающие в системе или в результате воздействия внутренних причин. Мы также называем эндогенные переменные переменными состояния (когда они характеризуют состояние или условия, имеющие место в системе) либо выходными переменными (когда речь идет о выходах системы). Статистики иногда называют экзогенные переменные независимыми, а эндогенные зависимыми. Функциональные зависимости описывают поведение переменных и параметров в пределах компонента или выражают соотношения между компонентами системы. Эти соотношения, или операционные характеристики, по своей природе являются либо детерминистскими, либо стохастическими. Детерминистские соотношения — это тождества или определения, которые устанавливают зависимость между определенными переменными или параметрами в тех случаях, когда процесс на выходе системы однозначно определяется заданной информацией на входе. В отличие от этого стохастические соотношения представляют собой такие зависимости, которые при заданной входной информации дают на выходе неопределенный результат. Оба типа соотношений обычно выражаются в форме математического уравнения, которое устанавливает зависимость между эндогенными переменными (переменными состояния) и экзогенными переменными. Обычно эти соотношения можно строить лишь на основе гипотез или выводить с помощью статистического или математического анализа.
Ограничения представляют собой устанавливаемые пределы изменения значений переменных или ограничивающие условия распределения и расходования тех или иных средств (энергии, запасов, времени и т. п.). Они могут вводиться либо разработчиком (искусственные ограничения), либо самой системой вследствие присущих ей свойств (естественные ограничения). Примерами искусственных ограничений могут быть заданные максимальный и минимальный уровни занятости рабочих или установленная максимальная сумма денежных средств, ассигнуемых на капиталовложения. В физической системе такого типа, как ракета, искусственным ограничением может быть заданный минимальный радиус действия или максимально допустимый вес. Большинство технических требований к системам представляет собой набор искусственных ограничений. Естественные ограничения обусловлены самой природой системы. Целевая функция, или функция критерия, — это точное отображение целей или задач системы и необходимых правил оценки их выполнения. Акоф и Сасиени указывают на два типа целей: сохранение и приобретение. Цели сохранения связаны с сохранением или поддержанием каких-либо ресурсов (временных, энергетических, творческих и т. д.) или состояний (комфорта, безопасности, уровня занятости и т. д.). Цели приобретения связаны с приобретением новых ресурсов (прибыли, персонала, заказчиков и т. п.) или достижением определенных состояний, к которым стремится организация или руководитель (захват части рынка, достижение состояния устрашения и т.п.). Выражение для целевой функции должно быть однозначным определением целей и задач, с которыми должны соразмеряться принимаемые решения. Цитированный выше словарь Вебстера определяет понятие «критерий» как «мерило оценки, правило или вид проверки, при помощи которых составляется правильное суждение о чем-либо». Это четкое и однозначное определение критерия очень важно по двум причинам. Во-первых, оно оказывает громадное влияние на процесс создания модели и манипулирования с ней. Во-вторых, неправильное определение критерия обычно ведет к неправильным заключениям. Функция критерия (целевая функция) обычно является органической составной частью модели, и весь процесс манипулирования с моделью направлен на оптимизацию или удовлетворение заданного критерия. Приняв во внимание все это, мы можем теперь сформулировать конкретные критерии, которым должна удовлетворять хорошая модель. Такая модель должна быть:
· простой и понятной пользователю, · целенаправленной, · надежной в смысле гарантии от абсурдных ответов, · удобной в управлении и обращении, т. е. общение с ней должно быть легким, · полной с точки зрения возможностей решения главных задач, · адаптивной, позволяющей легко переходить к другим модификациям или обновлять данные, · допускающей постепенные изменения в том смысле, что, будучи вначале простой, она может во взаимодействии с пользователем становиться все более сложной. Здесь надо сказать следующее: для того чтобы моделью можно было пользоваться, при ее разработке должны быть тщательно продуманы и потребности, и психология ее конечного потребителя. Имитационное моделирование должно быть процессом обучения как для создателя модели, так и для ее пользователя. И действительно, это может стать самой привлекательной стороной имитации при применении ее для решения сложных задач.
Процесс имитации Исходя из того что имитация должна применяться для исследования реальных систем, можно выделить следующие этапы этого процесса: 1. Определение системы — установление границ, ограничений и измерителей эффективности системы, подлежащей изучению. 2. Формулирование модели — переход от реальной системы к некоторой логической схеме (абстрагирование). 3. Подготовка данных — отбор данных, необходимых для построения модели, и представление их в соответствующей форме. 4. Трансляция модели — описание модели на языке, приемлемом для используемой ЭВМ. 5.Оценка адекватности — повышение до приемлемого уровня степени уверенности, с которой можно судить относительно корректности выводов о реальной системе, полученных на основании обращения к модели. 6.Стратегическое планирование — планирование эксперимента, который должен дать необходимую информацию. 7.Тактическое планирование — определение способа проведения каждой серии испытаний, предусмотренных планом эксперимента. 8.Экспериментирование — процесс осуществления имитации с целью получения желаемых данных и анализа чувствительности. 9.Интерпретация — построение выводов по данным, полученным путем имитации. 10.Реализация — практическое использование модели и (или) результатов моделирования. 11. Документирование — регистрация хода осуществления проекта и его результатов, а также документирование процесса создания и использования модели. Перечисленные этапы создания и использования модели определены в предположении, что задача может быть решена наилучшим образом с помощью имитационного моделирования. Однако, как мы уже отмечали, это может быть и не самый эффективный способ. Неоднократно указывалось, что имитация представляет собой крайнее средство или грубый силовой прием, применяемы" для решения задачи. Несомненно, что в том случае, когда задач может быть сведена к простой модели и решена аналитически нет никакой нужды в имитации. Следует изыскивать все возможные средства, подходящие для решения данной конкретной задачи, стремясь при этом к оптимальному сочетанию стоимости и желаемых результатов. Прежде чем приступать к оценке возможностей имитации, следует самому убедиться, что простая аналитическая модель для данного случая не пригодна. Поскольку необходимо и желательно подобрать для решения задачи соответствующие средства, решение о выборе того ил иного средства или метода должно следовать за формулированием задачи. Решение об использовании имитации не должно рассматриваться как окончательное. По мере накопления информации: углубления понимания задачи вопрос о правомерности применения имитации следует подвергать переоценке. Поскольку для этого часто требуются мощные ЭВМ и большие выборки данных, издержки, связанные с имитацией, почти всегда высоки по сравнению с расходами, необходимыми для решения задачи небольшой аналитической модели. Во всех случаях следует сопоставлять возможные затраты средств и времени, потребные для имитации, с ценностью информации, которую мы ожидаем получить.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|