Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Определение точечной оценки (статистики) и основные требования, предъявляемые к точечной оценке (несмещенность, состоятельность, эффективность)




Точечная оценка в математической статистике - это число, вычисляемое на основе наблюдений, предположительно близкое оцениваемому параметру. Пусть - выборка из распределения, зависящего от параметра qÎ Q. Тогда статистику называют точечной оценкой параметра .

Существует несколько методов определения оценок. Наиболее распространен метод максимального правдоподобия, теоретически обоснованный математиком Р. Фишером. Идея метода заключается в следующем. Вся получаемая в результате многократных наблюдений информация об истинном значении измеряемой величины и рассеивании результатов сосредоточена в ряде наблюдений , где n - число наблюдений. Их можно рассматривать как n независимых случайных величин с одной и той же дифференциальной функцией распределения . Вероятность получения в эксперименте некоторого результата , лежащего в интервале , где - некоторая малая величина, равна соответствующему элементу вероятности .

Независимость результатов наблюдений позволяет найти априорную вероятность появления одновременно всех экспериментальных данных, т.е. всего ряда наблюдений как произведение этих вероятностей:

Если рассматривать Q и как неизвестные параметры распределения, то, подставляя различные значения Q и в эту формулу, мы будем получать различные значения вероятности при каждом фиксированном ряде наблюдений . При некоторых значениях и вероятность получения экспериментальных данных достигает наибольшего значения. В соответствии с методом максимального правдоподобия именно эти значения и принимаются в качестве точечных оценок истинного значения и среднеквадратического отклонения результатов наблюдений.

Таким образом, метод максимального правдоподобия сводится к отысканию таких оценок и , при которых функция правдоподобия достигает наибольшего значения. Постоянный сомножитель не оказывает влияния на решение и поэтому может быть отброшен. Полученные оценки и истинного значения и среднеквадратического отклонения называются оценками максимального правдоподобия.

Наряду с методом максимального правдоподобия при определении точечных оценок широко используется метод наименьших квадратов. В соответствии с этим методом среди некоторого класса оценок выбирают ту, которая обладает наименьшей дисперсией, т. е. наиболее эффективную оценку. Легко заметить, что среди всех линейных оценок истинного значения вида , где - некоторые постоянные, именно среднее арифметическое обращает в минимум дисперсию . Поэтому для случая нормально распределенных случайных погрешностей оценки, получаемые методом наименьших квадратов, совпадают с оценками максимального правдоподобия.

Формально статистика может не иметь ничего общего с интересующим нас значением параметра θ. Её полезность для получения практически приемлемых оценок вытекает из дополнительных свойств, которыми она обладает или не обладает.

Свойства точечных оценок:

Оценка называется несмещённой, если ее математическое ожидание равно оцениваемому параметру генеральной совокупности: , где E обозначает математическое ожидание.

Оценка называется эффективной, если она обладает минимальной дисперсией среди всех возможных точечных оценок.

Оценка называется состоятельной, если она по вероятности с увеличением объема выборки n стремится к параметру генеральной совокупности: , по вероятности при .

содержание

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...