Общие уравнения прямой в пространстве.
Уравнение прямой может быть рассмотрено как уравнение линии пересечения двух плоскостей. Как было рассмотрено выше, плоскость в векторной форме может быть задана уравнением: × + D = 0, где - нормаль плоскости; - радиус- вектор произвольной точки плоскости. Пусть в пространстве заданы две плоскости: × + D1 = 0 и × + D2 = 0, векторы нормали имеют координаты: (A1, B1, C1), (A2, B2, C2); (x, y, z).
Тогда общие уравнения прямой в векторной форме: (5.17) Общие уравнения прямой в координатной форме: (5.18)
Практическая задача часто состоит в приведении уравнений прямых в общем виде к каноническому виду. Для этого надо найти произвольную точку прямой и числа m, n, p. При этом направляющий вектор прямой может быть найден как векторное произведение векторов нормали к заданным плоскостям.
Пример. Найти каноническое уравнение, если прямая задана в виде: Для нахождения произвольной точки прямой, примем ее координату х = 0, а затем подставим это значение в заданную систему уравнений.
Пример. Привести к каноническому виду уравнение прямой, заданное в виде: Для нахождения произвольной точки прямой, являющейся линией пересечения указанных выше плоскостей, примем z = 0. Тогда:
5.4. Поверхности второго порядка. Определение. Поверхности второго порядка – это поверхности, уравнения которых в прямоугольной системе координат являются уравнениями второго порядка.
5. 4.1. Цилиндрические поверхности. Определение. Цилиндрическими поверхностями называются поверхности, образованные линиями, параллельными какой- либо фиксированной прямой. Рассмотрим поверхности, в уравнении которых отсутствует составляющая z, т.е. направляющие параллельны оси Оz. Тип линии на плоскости ХOY (эта линия называется направляющей поверхности) определяет характер цилиндрической поверхности. Рассмотрим некоторые частные случаи в зависимости от уравнения направляющих:
1) - эллиптический цилиндр.
2) - гиперболический цилиндр.
2) x2 = 2py – параболический цилиндр.
5.4.2 Поверхности вращения.
Определение. Поверхность, описываемая некоторой линией, вращающейся вокруг неподвижной прямой d, называется поверхностью вращения с осью вращения d.
Если уравнение поверхности в прямоугольной системе координат имеет вид: F(x2 + y2, z) = 0, то эта поверхность – поверхность вращения с осью вращения Оz. Аналогично: F(x2 + z2, y) = 0 – поверхность вращения с осью вращения Оу, F(z2 + y2, x) = 0 – поверхность вращения с осью вращения Ох.
Запишем уравнения поверхностей вращения для некоторых частных случаев:
1) - эллипсоид вращения 2) - однополостный гиперболоид вращения 3) - двуполостный гиперболоид вращения 4) - параболоид вращения Аналогично могут быть записаны уравнения для рассмотренных выше поверхностей вращения, если осью вращения являются оси Ох или Оу.
Однако, перечисленные выше поверхности являются всего лишь частными случаями поверхностей второго порядка общего вида, некоторые типы которых рассмотрены ниже:
Сфера:
Трехосный эллипсоид:
В сечении эллипсоида плоскостями, параллельными координатным плоскостям, получаются эллипсы с различными осями.
Однополостный гиперболоид:
Двуполостный гиперболоид:
Эллиптический параболоид:
Гиперболический параболоид:
Конус второго порядка:
5. 4.3. Цилиндрическая и сферическая системы координат.
Как и на плоскости, в пространстве положение любой точки может быть определено тремя координатами в различных системах координат, отличных от декартовой прямоугольной системы. Цилиндрическая и сферическая системы координат являются обобщением для пространства полярной системы координат, которая была подробно рассмотрена ранее. Введем в пространстве точку О и луч l, выходящий из точки О, а также вектор . Через точку О можно провести единственную плоскость, перпендикулярную вектору нормали . Для введения соответствия между цилиндрической, сферической и декартовой прямоугольной системами координат точку О совмещают с началом декартовой прямоугольной системы координат, луч l – с положительным направлением оси х, вектор нормали – с осью z. Цилиндрическая и сферическая системы координат используются в тех случаях, когда уравнение кривой или поверхности в декартовой прямоугольной системе координат выглядят достаточно сложно, и операции с таким уравнением представляются трудоемкими. Представление уравнений в цилиндрической и сферической системе позволяет значительно упростить вычисления, что будет показано далее. z
М
r j h
0 q x r M1
y
ОМ1 = r; MM1 = h; Если из точки М опустить перпендикуляр ММ1 на плоскость, то точка М1 будет иметь на плоскости полярные координаты (r, q).
Определение. Цилиндрическими координатами точки М называются числа (r, q, h), которые определяют положение точки М в пространстве.
Определение. Сферическими координатами точки М называются числа (r,j,q), где j - угол между r и нормалью.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|