Собственные значения и собственные векторы линейного преобразования.
Определение: Пусть L – заданное n- мерное линейное пространство. Ненулевой вектор
A
При этом число l называется собственным значением (характеристическим числом) линейного преобразования А, соответствующего вектору
Перенеся правую часть (7.1) в левую и принимая во внимание соотношение
Уравнение (7.2) эквивалентно системе линейных однородных уравнений:
Для существования ненулевого решения системы линейных однородных уравнений (7.3) необходимо и достаточно, чтобы определитель коэффициентов этой системы равнялся нулю, т.е. |A-λE|= Этот определитель является многочленом n-ой степени относительно λ и называется характеристическим многочленом линейного преобразования А, а уравнение (7.4) - характеристическим уравнением матрицы А.
Определение: Если линейное преобразование А в некотором базисе
Рассмотрим частный случай. Пусть А – некоторое линейное преобразование плоскости, матрица которого равна
в некотором базисе Если преобразование А имеет собственный вектор с собственным значением l, то А
Т.к. собственный вектор
Полученное уравнение является характеристическим уравнением линейного преобразования А.
Таким образом, можно найти собственный вектор
Понятно, что если характеристическое уравнение не имеет действительных корней, то линейное преобразование А не имеет собственных векторов. Следует отметить, что если Действительно,
Т.к. характеристическое уравнение может иметь два различных действительных корня l1 и l2, то в этом случае при подстановке их в систему уравнений получим бесконечное количество решений. (Т.к. уравнения линейно зависимы). Это множество решений определяет две собственные прямые. Если характеристическое уравнение имеет два равных корня l1 = l2 = l, то либо имеется лишь одна собственная прямая, либо, если при подстановке в систему она превращается в систему вида: Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А =
Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А =
Запишем линейное преобразование в виде:
Составим характеристическое уравнение: l2 - 4l + 4 = 0; Корни характеристического уравнения: l1 = l2 = 2;
Получаем: Из системы получается зависимость: x1 – x2 = 0. Собственные векторы для первого корня характеристического уравнения имеют координаты: (t; t) где t - параметр. Собственный вектор можно записать:
Рассмотрим другой частный случай. Если
где l - собственное значение (характеристическое число) преобразования А.
Если матрица линейного преобразования А имеет вид:
Характеристическое уравнение: Раскрыв определитель, получим кубическое уравнение относительно l. Любое кубическое уравнение с действительными коэффициентами имеет либо один, либо три действительных корня. Тогда любое линейное преобразование в трехмерном пространстве имеет собственные векторы.
Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А =
Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А = Составим характеристическое уравнение:
-(3 + l)((1 - l)(2 - l) – 2) + 2(4 - 2l - 2) - 4(2 - 1 + l) = 0 -(3 + l)(2 - l - 2l + l2 - 2) + 2(2 - 2l) - 4(1 + l) = 0 -(3 + l)(l2 - 3l) + 4 - 4l - 4 - 4l = 0 -3l2 + 9l - l3 + 3l2 - 8l = 0 -l3 + l = 0 l1 = 0; l2 = 1; l3 = -1;
Для l1 = 0:
Если принять х3 = 1, получаем х1 = 0, х2 = -2 Собственные векторы
Аналогично можно найти Квадратичные формы. Определение: Однородный многочлен второй степени относительно переменных х1 и х2 Ф(х1, х2) = а 11 не содержащий свободного члена и неизвестных в первой степени, называется квадратичной формой переменных х1 и х2.
Определение: Однородный многочлен второй степени относительно переменных х1, х2 и х3 не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1, х2 и х3.
Рассмотрим квадратичную форму двух переменных. Квадратичная форма имеет симметрическую матрицу А =
Пусть на плоскости задан ортогональный базис
Если задана квадратичная форма Ф(х1, х2) = а 11
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|