Геометрическая интерпретация комплексного числа.
⇐ ПредыдущаяСтр 11 из 11 Понятие комплексного числа имеет геометрическое истолкование. Множество комплексных чисел является расширением множества действительных чисел за счет включения множества мнимых чисел. Комплексные числа включают в себя все множества чисел, которые изучались ранее. Так натуральные, целые, рациональные, иррациональные, действительные числа являются, вообще говоря, частными случаями комплексных чисел. Если любое действительное число может быть геометрически представлено в виде точки на числовой прямой, то комплексное число представляется точкой на плоскости, координатами которой будут соответственно действительная и мнимая части комплексного числа. При этом горизонтальная ось будет являться действительной числовой осью, а вертикальная - мнимой осью. Вся плоскость называется комплексной плоскостью. у
A(a, b)
r b j
0 a x
Таким образом, на оси ОХ располагаются действительные числа, а на оси ОY – чисто мнимые. С помощью подобного геометрического представления можно представлять числа в так называемой тригонометрической форме. Тригонометрическая форма числа.
Из геометрических соображений видно, что . Тогда комплексное число можно представить в виде: Такая форма записи называется тригонометрической формой записи комплексного числа. При этом величина r называется модулем комплексного числа, а угол наклона j - аргументом комплексного числа.
.
Из геометрических соображений видно:
Очевидно, что комплексно – сопряженные числа имеют одинаковые модули и противоположные аргументы. Действия с комплексными числами.
Основные действия с комплексными числами вытекают из действий с многочленами.
1) Сложение и вычитание.
2) Умножение.
В тригонометрической форме: ,
С случае комплексно – сопряженных чисел: 3) Деление.
В тригонометрической форме:
4) Возведение в степень. Из операции умножения комплексных чисел следует, что В общем случае получим: ,
где n – целое положительное число. Это выражение называется формулой Муавра. (Абрахам де Муавр (1667 – 1754) – английский математик) Формулу Муавра можно использовать для нахождения тригонометрических функций двойного, тройного и т.д. углов.
Пример. Найти формулы sin2j и cos2j. Рассмотрим некоторое комплексное число Тогда с одной стороны . По формуле Муавра: Приравнивая, получим Т.к. два комплексных числа равны, если равны их действительные и мнимые части, то Получили известные формулы двойного угла. 5) Извлечение корня из комплексного числа. Возводя в степень, получим: Отсюда:
Таким образом, корень n – ой степени из комплексного числа имеет n различных значений.
Показательная форма комплексного числа.
Рассмотрим показательную функцию Можно показать, что функция w может быть записана в виде:
Данное равенство называется уравнением Эйлера. Вывод этого уравнения мы рассматривать не будем. Для комплексных чисел будут справедливы следующие свойства: 1) 2) 3) где m – целое число. Если в уравнении Эйлера показатель степени принять за чисто мнимое число (х=0), то получаем: Для комплексно – сопряженного числа получаем: Из этих двух уравнений получаем:
Этими формулами пользуются для нахождения значений степеней тригонометрических функций через функции кратных углов.
Если представить комплексное число в тригонометрической форме: и воспользуемся формулой Эйлера:
Полученное равенство и есть показательная форма комплексного числа.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|