Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Формула полной вероятности. Формула Байеса




 

Определение. Будем говорить, что события В , В , …, В образуют полную группу событий, если:

1. Событие В + В + …+ В достоверное;

2. События Вi и Вj – попарно несовместные (i= 1,2,…,n, j= 1,2,…,n, i j).

Утверждение. Сумма вероятностей событий, образующих полную группу равна 1.

Пример. Студент на экзамене может получить одну из четырех оценок: «отлично», «хорошо», «удовлетворительно» и «неудовлетворительно». События – получил «отлично»,

– получил «хорошо»,

– получил «удовлетворительно»,

– получил «неудовлетворительно»

попарно несовместные и в сумме – событие достоверное, так как обязательно происходит одно из этих событий. Следовательно, события В , В , В , В4 образуют полную группу событий.

Для нахождения вероятности события А, которое может произойти при условии осуществления одного из несовместных событий В , В , …, В , образующих полную группу, используется формула:

Р(А)=

Эта формула называется формулой полной вероятности.

События В , В , …, В называются гипотезами.

Пример. В урну, содержащую два шара, опущен зеленый шар. Найти вероятность того, что будет вытащен из урны зеленый шар, если равновероятны первоначальные представления о цвете шаров.

Решение. Событие А– извлечен зеленый шар.

Возможны следующие гипотезы о первоначальном составе шаров:

В – первоначально зеленых шаров не было в урне;

В – был 1 зеленый шар;

В – оба шара зеленые.

По условию задачи гипотезы равновероятны и образуют полную группу событий, следовательно, вероятность каждой из гипотез равна ⅓, то есть Р(В )= Р(В ) = Р(В ) = ⅓. Тогда условные вероятности наступления события А при появлении каждой из гипотез будут соответственно равны:

Р (А) = ⅓; Р (А) = ⅔; Р (А) =1.

Отсюда по формуле полной вероятности получаем:

Р(А) = Р(В ) · Р (А) + Р(В ) · Р (А) + Р(В ) · Р (А).

Р(А) = ⅓ · ⅓ + ⅓ · ⅔ + ⅔ · 1 = ⅔.

Пусть событие А может наступить лишь при условии появления одного из несовместных событий В , В , …, В , образующих полную группу событий.

Если событие А уже произошло, то вероятности гипотез В , В , …, В могут быть переоценены по следующей формуле:

Р (B )= ,

где i = 1, 2, 3,…, n.

Эта формула называется формулой Байеса.

Пример. Два автомата производят одинаковые детали, поступающие на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60% деталей отличного качества, а второй 84%. Наудачу взятая деталь оказалась отличного качества. Найти вероятность того, что эта деталь сделана первым автоматом.

Решение. Рассмотрим событие А – деталь отличного качества.

Можно составить две гипотезы:

В – деталь сделана первым автоматом, причем Р(В ) = ⅔, так как его производительность вдвое больше производительности второго автомата.

В – деталь сделана вторым автоматом, причем Р(В ) = ⅓.

Условная вероятность появления события А при выполнении гипотезы В равна Р (А) = 0,6.

Условная вероятность появления события А при выполнении гипотезы В равна: Р (А) = 0,84.

Отсюда вероятность появления события А равна:

Р(А) = ⅔ · 0,6 + ⅓ · 0,84 = 0,68.

Тогда вероятность того, что деталь отличного качества сделана первым автоматом, по формуле Байеса равна:

Р ) = = .

 

Формула Бернулли

 

Пусть производится n независимых испытаний, в каждом из которых событие может появиться либо не появиться. Условимся считать, что вероятность события А в каждом испытании одна и та же, а именно равна р (0< p < 1). Следовательно, вероятность непоявления события А в каждом испытании также постоянна и равна q = 1 – p.

Часто возникает задача вычислить вероятность того, что при n испытаниях событие А наступит ровно k раз.

Искомая вероятность обозначается P (k).

Например, символ Р (3), означает вероятность того, что в пяти испытаниях событие появится ровно 3 раза и, следовательно, не наступит 2 раза.

Поставленную задачу можно решить с помощью так называемой формулы Бернулли.

P (k) = ,

где .

Вероятности того, что в n испытаниях событие наступит: а)менее t раз; б) более t раз; в) не менее t раз; г) не более t раз находят соответственно по формулам:

a) P (0) + P (1)+…+ P (t–1)= P (k<t),

б) P (t+1) + P (t+2) + … + P (n) = P (k>t),

в) P (t) + P (t +1) + … + P (n) = P (k≥t),

г) P (0) + P (1) +… + P (t) = P (k≤t).

Пример. Вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна р=0,7. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.

Решение. Вероятность нормального расхода электроэнергии в продолжении каждых из 6 суток постоянна и равна р=0,7. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q =1 – p = 1 – 0,7 = 0,3.

Из условия задачи следует, что n = 6; k=4.

Искомая вероятность по формуле Бернулли равна:

.

 

Локальная теорема Лапласа

 

Формула Бернулли позволяет вычислить вероятность того, что событие появиться в n испытаниях ровно k раз: P (k) =

При применении формулы учитывается, что вероятность появления события в каждом испытании постоянна. Легко видеть, что пользоваться формулой Бернулли при больших значениях n достаточно трудно.

Естественно, возникает вопрос: нельзя ли вычислить интересующую нас вероятность, если число испытаний велико, не прибегая к формуле Бернулли? Оказывается, можно.

Локальная теорема Лапласа и дает асимптотическую формулу, которая позволяет приближенно найти вероятность появления события ровно k раз в n испытаниях, если число испытаний достаточно велико.

Локальная теорема Лапласа.

Если вероятность р появления события А в каждом испытании постоянна и отлична от нуля и единицы, то вероятность Р (k) того, что событие А появится в n испытаниях ровно k раз, приближенно равна (тем точнее, чем больше n):

Р (k) =

где φ(x) = ; q = 1 – p.

Имеются таблицы, в которых помещены значения функции φ(x)= ,

соответствующие положительным значениям аргумента x (см. приложение 1).

Для отрицательных значений аргумента пользуются теми же таблицами, так как φ(х) – функция четная, то есть φ(–x) = φ(x).

Пример. Найти вероятность того, что событие А наступит ровно 80 раз в 400 испытаниях, если вероятность появления этого события в каждом испытании

равна 0,2.

Решение. По условию, n=400; k=80; p=0,2; q=0,8.

Воспользуемся формулой Лапласа:

Р (80)≈ .

Вычислим определяемое данными задачи значение х:

x = (k–np) / = (80 – 400 ∙ 0,2) / 8 = 0

По таблице приложения 1 находим φ(0)=0,3989.

Искомая вероятность:

Р (80)= (1/8)∙0,3989=0,04986.

Формула Бернулли приводит примерно к такому же результату (выкладки ввиду их громоздкости опущены): Р (80)=0,0498.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...