Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Регрессия как приблизительное описание (аппроксимирование) диаграммы рассеивания математическим уравнением.




В практических исследованиях возникает необходимость аппроксимировать (описать приблизительно) диаграмму рассеяния математическим уравнением. То есть зависимость между переменными величинами Y и Х можно выразить аналитически с помощью формул и уравнений и графически в виде геометрического места точек в системе прямоугольных координат. График корреляционной зависимости строится по уравнениям функции и , которые называются регрессией (термин “регрессия” происходит от лат. regressio — движение назад). Здесь и — средние арифметические из числовых значений зависимых переменных Y и X.

Для выражения регрессии служат эмпирические и теоретические ряды, их графики — линии регрессии, а также корреляционные уравнения (уравнения регрессии) и коэффициент линейной регрессии.

Показатели регрессии выражают корреляционную связь двусторонне, учитывая изменение средней величины признака Y при изменении значений xi признака X, и, наоборот, показывают изменение средней величины признака Х по измененным значениям yi признака Y. Исключение составляют временные ряды, или ряды динамики, показывающие изменение признаков во времени. Регрессия таких рядов является односторонней.

Ряды регрессии, особенно их графики, дают наглядное представление о форме и тесноте корреляционной связи между признаками, в чем и заключается их ценность. Форма связи между показателями, влияющими на уровень спортивного результата и общей физической подготовки занимающихся физической культурой и спортом, может быть разнообразной.

И поэтому задача состоит в том, чтобы любую форму корреляционной связи выразить уравнением определенной функции (линейной, параболической и т.д.), что позволяет получать нужную информацию о корреляции между переменными величинами Y и X, предвидеть возможные изменения признака Y на основе известных изменений X, связанного с Y корреляционно.

Обычно признак Y рассматривается как функция многих аргументов — x1, x2, x3,...— и может быть записана в виде:

y = a + bx1 + cx2 + dx3 +...,

где: а, b, с и d — параметры уравнения, определяющие соотношение между аргументами и функцией. В практике учитываются не все, а лишь некоторые аргументы, в простейшем случае, как при описании линейной регрессии, — всего один:

y = a + bx (2.1)

В этом уравнении параметр а — свободный член; графически он представляет отрезок ординаты (у) в системе прямоугольных координат. Параметр b называется коэффициентом регрессии. С точки зрения аналитической геометрии b— угловой коэффициент, определяющий наклон линии регрессии по отношению к осям, координат. В области регрессионного анализа этот параметр показывает, насколько в среднем величина одного признака (Y) изменяется при изменении на единицу меры другого корреляционно связанного с Y признака X. Наглядное представление об этом параметре и о положении линий регрессии Y по Х и X по Y в системе прямоугольных координат дает рисунок 2.1.

Рис. 2.1. Схема линий регрессии Y по Х и Х по Y в системе прямоугольных координат.

Линии регрессии, как показано, пересекаются в точке 0 (), соответствующей средним арифметическим значениям корреляционно связанных друг с другом признаков Y и X. Линия АВ, проходящая через эту точку, изображает полную (функциональную) зависимость между переменными величинами Y и X, когда коэффициент корреляции r = 1.

Чем сильнее связь между Y и X, тем ближе линии регрессии к АВ, и, наоборот, чем слабее связь между варьирующими признаками, тем более удаленными оказываются линии регрессии от АВ. При отсутствии связи между признаками, когда r = 0, линии регрессии оказываются под прямым углом (90°) по отношению друг к другу.

Уравнение регрессии тем лучше описывает зависимость, чем меньше рассеяние диаграммы, чем больше теснота взаимосвязи. Уравнение прямой линии пригодно для описания только линейных зависимостей. В случае не-линейных зависимостей математическая запись может отображаться уравнениями параболы, гиперболы и др.

Необходимо также сделать одно важное замечание о значении показателей, характеризующих взаимосвязь признаков (коэффициентов корреляции, регрессии и т. п.). Все они дают лишь количественную меру связи, но ничего не говорят о причинах зависимости. Определить эти причины — дело самого исследователя.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...