Вывод формул для площадей четырехугольников
Утверждение 1. Площадь выпуклого четырёхугольника можно найти по формуле где d 1 и d 2 – диагонали четырёхугольника, а φ – любой из четырёх углов между ними (рис. 1). Рис. 1 Доказательство. В соответствии с рисунком 1 справедливо равенство:
что и требовалось доказать. Утверждение 2. Площадь параллелограмма можно найти по формуле S = a ha, где a – сторона параллелограмма, а ha – высота, опущенная на эту сторону (рис. 2). Рис. 2 Доказательство. Поскольку прямоугольный треугольник DFC равен прямоугольному треугольнику AEB (рис.26), то четырёхугольник AEFB – прямоугольник. Поэтому SABCD = SAEFD = a ha, что и требовалось доказать. Утверждение 3. Площадь параллелограмма можно найти по формуле S = ab sin φ, где a и b – смежные стороны параллелограмма, а φ – угол между ними (рис. 3). Рис. 3 Доказательство. Поскольку ha= b sin φ, то, в силу утверждения 2, справедлива формула S = a ha= ab sin φ, что и требовалось доказать. 76 вопрос ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ 43.1. Основные понятия Пусть задано множество D упорядоченных пар чисел (х;у). Соответствие ƒ, которое каждой паре чисел (х; у) є D сопоставляет одно и только одно число z є R, называется функцией двух переменных, определенной на множестве D со значениями в Е, и записывается в виде z = ƒ(х;у) или ƒ: D→ R При этом х и у называются независимыми переменными (аргументами), а z — зависимой переменной (функцией). Множество D = D(f) называется областью определения функции. Множество значений, принимаемых z в области определения, называется областью изменения этой функции, обозначается E(f) или Е. Примером функции двух переменных может служить площадь S прямоугольника со сторонами, длины которых равны х и у: S = ху. Областью определения этой функции является множество {(х;у) | х > 0, у > 0}.
Функцию z = ƒ(х;у), где (х;у) є D можно понимать (рассматривать) как функцию точки М(х;у) координатной плоскости Оху. В частности, областью определения может быть вся плоскость или ее часть, ограниченная некоторыми линиями. Линию, ограничивающую область, называют границей области. Точки области, не лежащие на границе, называются внутренними. Область, состоящая из одних внутренних точек, называется открытой. Область с присоединенной к ней границей называется замкнутой, обозначается D. Примером замкнутой области является круг с окружностью. Значение функции z = ƒ(х;у) в точке М0(х0;у0) обозначают z0=ƒ(хо;уо) или z0=ƒ(М0) и называют частным значением функции. Функция двух независимых переменных допускает геометрическое истолкование. Каждой точке М0(х0; у0) области D в системе координат Oxyz соответствует точка M(x0;y0;z0), где z0 = ƒ(хо;уо) — аппликата точки М. Совокупность всех таких точек представляет собой некоторую поверхность, которая и будет геометрически изображать данную функцию z=ƒ(x;у). Например, функция Функция двух переменных, как и функция одной переменной, может быть задана разными способами: таблицей, аналитически, графиком. Будем пользоваться, как правило, аналитическим способом: когда функция задается с помощью формулы.
Для функции двух (и большего числа) переменных вводится понятие предела функции и непрерывности, аналогично случаю функции одной переменной. Введем понятие окрестности точки. Множество всех точек М(х;у) плоскости, координаты которых удовлетворяют неравенству
Пусть функция z = ƒ(х; у) определена в некоторой окрестности точки М0(х0;у0), кроме, быть может, самой этой точки. Число А называется пределом функции z = ƒ (х; у) при х → х0 и у → у0(или, что то же самое, при М(х; у) → М0(х0; у0)), если для любого є > 0 существует > 0 такое, что для всех х ≠ х0 и у ≠ у0и удовлетворяющих неравенству
Из определения следует, что если предел существует, то он не зависит от пути, по которому М стремится к Мо (число таких направлений бесконечно; для функции одной переменной х→ х0 по двум направлениям: справа и слева!) Геометрический смысл предела функции двух переменных состоит в следующем. Каково бы ни было число є>0, найдется-окрестность точки Mо(хо;уо), что во всех ее точках М(х;у), отличных от Мо, аппликаты соответствующих точек поверхности z=ƒ(х;у) отличаются от числа А по модулю меньше, чем на є. Пример 43.1. Найти предел Решение: Будем приближаться к О(0;0) по прямой у=Кх, где К — некоторое число. Тогда Функция
Предел функции двух переменных обладает свойствами, аналогичными свойствам предела функции одной переменной (см. п. 17.3). Это означает, что справедливы утверждения: если функции ƒ (М) и g(М) определены на множестве D и имеют в точке Мо этого множества пределы А и В соответственно, то и функции ƒ(М) ± g(M), ƒ(М) • g(М), имеют в точке Мо пределы, которые соответственно равны
43.3. Непрерывность функции двух переменных Функция z = ƒ(х;у) (или ƒ(М)) называется непрерывной в точке М0(х0;у0), если она: а) определена в этой точке и некоторой ее окрестности, б) имеет предел в) этот предел равен Функция, непрерывная в каждой точке некоторой области, называется непрерывной в этой области. Точки, в которых непрерывность нарушается (не выполняется хотя бы одно из условий непрерывности функции в точке), называются точками разрыва этой функции. Точки разрыва z=ƒ(х;у) могут образовывать целые линии разрыва. Так, функция
Можно дать другое, равносильное приведенному выше, определение непрерывности функции z=ƒ(х;у) в точке. Обозначим Δх=х—х0, Δу=у—у0, Δz=ƒ(х;у)—ƒ(х0;у0). Величины Δх и Δу называются приращениями аргументов х и у, а Δz — полным приращением функции ƒ(х;у) в точке М0(х0;у0). Функция z = ƒ(х;у) называется непрерывной в точке М0(х0;у0) є D, если выполняется равенство Пользуясь определением непрерывности и теоремами о пределах, можно доказать, что арифметические операции над непрерывными функциями и построение сложной функции из непрерывных функций приводит к непрерывным функциям — подобные теоремы имели место для функций одной переменной (см. п. 19.4).
Частные производные функции двух переменных. На данном уроке мы продолжим знакомство с функцией двух переменных и рассмотрим, пожалуй, самое распространенное тематическое задание – нахождение частных производных первого и второго порядка, а также полного дифференциала функции. Студенты-заочники, как правило, сталкиваются с частными производными на 1 курсе во 2 семестре. Причем, по моим наблюдениям, задание на нахождение частных производных практически всегда встречается на экзамене. Для эффективного изучения нижеизложенного материала вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции. Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде. Раздобыть справочный материал можно на странице Математические формулы и таблицы. Быстренько повторим понятие функции двух переменных, я постараюсь ограничиться самым минимумом. Функция двух переменных обычно записывается как
Пример: Иногда используют запись С геометрической точки зрения функция двух переменных Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной. Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас: Пример 1 Найти частные производные первого и второго порядка функции Сначала найдем частные производные первого порядка. Их две. Обозначения: Начнем с Решаем: Комментарии к выполненным действиям: (1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом. Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если вы где-нибудь нарисуете «штрих» без Далее данный шаг комментироваться не будет, все сделанные замечания справедливы для любого примера по рассматриваемой теме. (2) Используем правила дифференцирования (3) Используем табличные производные (4) Упрощаем, или, как я люблю говорить, «причесываем» ответ.
Теперь (1) Используем те же правила дифференцирования (2) Используем таблицу производным элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива и для
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|