Проверка эффективности применявшейся методики тренировки
Для проверки эффективности методики тренировки выдвигаем гипотезы: – нулевую – H0: об отсутствии различия между средним исходным показателем скоростных качеств и средним показателем скоростных качеств , достигнутым после двух месяцев тренировок (); – конкурирующую – H1: о наличии разницы между ними (). Предположение об ухудшении скоростных качеств после тренировок, т.е. о том, что , в данном случае лишено здравого смысла, поэтому мы имеем дело с односторонней критической областью. Ранее мы получили, что sd 2 = 26 уд2. Следовательно, уд. Наблюдаемое значение t -критерия Стьюдента равно: . По таблице (Приложение 4) ищем tкрит для a = 0,05, числа степеней свободы k = n – 1 = 10 – 1 = 9 и односторонней критической области. Находим, что tкрит = 1,83. Сравнение tнабл и tкрит позволяет сделать вывод: так как tнабл (3,10) > tкрит (1,83), с вероятностью 95% (a = 0,05) должна быть принята конкурирующая гипотеза (H1: ). Следовательно, применение данной методики развития скоростных качеств у спортсменов эффективно. Средний исходный показатель скоростных качеств статистически достоверно увеличился на 5,0 ударов.
Расчет и построение доверительного интервала для генеральной средней арифметической Так как распределение выборки d, составленной из разностей парных значений, согласуется с нормальным законом распределения, а генеральная дисперсия di неизвестна, точные значения границ доверительного интервала, в котором с доверительной вероятностью P будет находиться среднее арифметическое значение генеральной совокупности , найдем из следующего двойного неравенства: Для рассматриваемой задачи оно будет иметь вид: По таблице критерия Стьюдента (Приложение 4) мы нашли, что для уровня значимости a = 0,05, числа степеней свободы k = n – 1 = 10 – 1 = 9 и двухсторонней критической области ta = 2,26.
Стандартную ошибку среднего арифметического найдем по формуле: уд. Доверительный интервал для среднего арифметического прироста количества ударов за 10 с в генеральной совокупности равен: 1,35 уд. 8,65 уд. Следовательно, с доверительной вероятностью P = 0,95 можно утверждать, что в результате тренировки улучшение показателя скоростных качеств будет находиться в пределах от 1,35 до 8,65 ударов за 10 с. Для построения доверительного интервала необходимо выбрать масштаб. Выберем масштаб 1 уд ≡ 1 см.
Доверительный интервал для Вариант 2: критерий непараметрический Примечание: В качестве примера возьмем приведенные в таблице 5.4 результаты измерения показателя скоростных качеств у спортсменов перед началом тренировок (они обозначены индексом В, были получены в результате измерений на I этапе деловой игры) и после двух месяцев тренировок (они обозначены индексом Г).
От выборок В и Г перейдем к выборке, составленной из разностей парных значений di = NiГ – NiВ и определим квадраты этих разностей. Данные занесем в расчетную таблицу 5.4.
Таблица 5.4 – Расчет квадратов парных разностей значений di2
Пользуясь таблицей 5.4, найдем среднее арифметическое парных разностей: уд. Далее рассчитаем сумму квадратов отклонений di от по формуле: уд.2 Определим дисперсию для выборки di: уд.2 Далее необходимо выборку, составленную из разностей парных значений di, проверить на нормальность распределения.
Выдвигаем гипотезы: – нулевую – H0: о том, что генеральная совокупность парных разностей di имеет нормальное распределение; – конкурирующую – H1: о том, что распределение генеральной совокупности парных разностей di отлично от нормального. Проверку проводим на уровне значимости a = 0,05. Для этого составим расчетную таблицу 5.3. Порядок заполнения таблицы 5.5 аналогичен порядку заполнения таблицы 5,3 и был описан в первом варианте выполнения V этапа.
Таблица 5.5 – Данные расчета критерия Шапиро и Уилка Wнабл для выборки, составленной из разностей парных значений di
По таблице 5.5 находим: ; . Наблюдаемое значение критерия Wнабл находим по формуле: . Проверим правильность выполнения расчетов критерия Шапиро и Уилка (Wнабл) его расчетом на ПЭВМ по программе «Статистика». Расчет критерия Шапиро и Уилка (Wнабл) на ПЭВМ позволил установить, что: . Далее по таблице критических значений критерия Шапиро и Уилка (Приложение 3) ищем Wкрит для n = 10. Находим, что Wкрит = 0,842. Сравним величины Wкрит и Wнабл. Делаем вывод: так как Wнабл (0,839) < Wкрит (0,842), должна быть принята конкурирующая гипотеза о распределении генеральной совокупности di, отличном от нормального. Поскольку выборки попарно зависимые, а распределение парных разностей отличается от нормального, для оценки эффективности применявшейся методики развития скоростных качеств следует использовать непараметрический U -критерий Уилкоксона.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|