Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Аппроксимация каноническим полиномом.




Выберем базисные функции в виде последовательности степеней аргумента x:

φ 0(x) = x 0 = 1; φ 1(x) = x 1 = x; φ m(x) = x m, m < n.

Расширенная матрица Грама для степенного базиса будет выглядеть следующим образом:

.

Особенность вычислений такой матрицы (для уменьшения количества выполняемых действий) состоит в том, что необходимо сосчитать только элементы первой строки и двух последних столбцов: остальные элементы заполняются сдвигом предшествующей строки (за исключением двух последних столбцов) на одну позицию влево. В некоторых языках программирования, где отсутствует быстрая процедура возведения в степень, пригодится алгоритм расчета матрицы Грама, представленный далее.

Выбор базисных функций в виде степеней x не является оптимальным с точки зрения достижения наименьшей погрешности. Это является следствием неортогональности выбранных базисных функций. Свойство ортогональности заключается в том, что для каждого типа полинома существует отрезок [ x 0, x n], на котором обращаются в нуль скалярные произведения полиномов разного порядка:

, jk, ρ ­– некоторая весовая функция.

Если бы базисные функции были ортогональны, то все недиагональные элементы матрицы Грама были бы близки к нулю, что увеличило бы точность вычислений, в противном случае при определитель матрицы Грама очень быстро стремится к нулю, т.е. система становится плохо обусловленной.

 


Блок-схема алгоритма формирования матрицы Грама и аппроксимации полиномом.

Аппроксимация ортогональными классическими полиномами.

Представленные ниже полиномы, относящиеся ко многочленам Якоби, обладают свойством ортогональности в изложенном выше смысле. То есть, для достижения высокой точности вычислений рекомендуется выбирать базисные функции для аппроксимации в виде этих полиномов.

1) Полиномы Чебышева.

Определены и ортогональны на [–1, 1] с весом . В интервал ортогональности всегда можно вписать область определения исходной функции с помощью линейных преобразований.

Строятся следующим образом (рекуррентная формула):

T 0(x) = 1;

T 1(x) = x;

T k+1(x) = 2 xT k(x) – T k–1(x).

 

2) Полиномы Лежандра.

Определены и ортогональны на [–1, 1] с весом .

Строятся следующим образом (рекуррентная формула):

L 0(x) = 1;

L 1(x) = x;

.

 

Сглаживание и линейная регрессия.

Рассмотрим несколько наиболее простых с точки зрения программной реализации случаев аппроксимации (сглаживания).

1) Линейная регрессия.

В случае линейного варианта МНК (линейная регрессия) φ (x) = a + bx можно сразу получить значения коэффициентов a и b по следующим формулам:

,

,

где , .

2) Линейное сглаживание по трём точкам.

 

3) Линейное сглаживание по пяти точкам.

 


Решение нелинейных уравнений с одним неизвестным.

Общие сведения о численном решении уравнений с одним неизвестным.

Пусть задана непрерывная функция f (x). Требуется найти корни уравнения f (x) = 0 численными методами – это и является постановкой задачи. Численное решение уравнения распадается на несколько подзадач:

1) Анализ количества, характера и расположения корней (обычно путем построения графика функции или исходя из физического смысла исследуемой модели). Здесь возможны следующие варианты:

  • единственный корень;
  • бесконечное множество решений;
  • корней нет;
  • имеется несколько решений, как действительных, так и мнимых (например, для полинома степени n). Корни четной кратности выявить сложно.

2) Локализация корней (разбиение на интервалы) и выбор начального приближения к каждому корню. В простейшем случае можно протабулировать функцию с заданным шагом.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...