Модель в виде фильтра Каллмана
Каллманом была доказана теорема о том, что любой динамический сигнал может быть представлен в виде: Yi = A 1 · Xi + A 2 · Xi – 1 + … + B 1 · Yi – 1 + B 2 · Yi – 2 + … + C.
Идея фильтра Каллмана заключается в том, что выход системы в i -ый момент времени определяется входным сигналом, его предысторией и предысторией самого состояния системы. Чем больше имеется членов ряда, то есть чем больше переменных Y учитывается в записи модели, тем глубже память системы. Заметим, что наличие члена Yi – 1 в модели динамической системы соответствует наличию первой производной, Yi – 2 — второй производной и т. д. Допустим, известны следующие экспериментальные данные: состояния сигналов Xi и Yi в n временных точках (табл. 6.1).
Поскольку для каждой экспериментальной точки Xi надо указать ее соседей, задаваемых рядом, то удобно отсчеты представить в расширенной таблице, используемой для расчета (см. табл. 6.2).
Находим ошибку между значением экспериментально снятой точки и теоретическим ее значением (гипотезой): Em = Ym – A 1 · Xm – A 2 · Xm – 1 – … – B 1 · Ym – 1 – B 2 · Ym – 2 – … – C. Суммарная ошибка F (сумма берется по всем экспериментальным точкам) должна быть минимизирована относительно определяемых переменных A 1, A 2, …, B 1, B 2, …, C: После взятия частных производных от F по A 1, A 2, …, B 1, B 2, …, C, приравнивания их к нулю и составления системы уравнений получается линейная множественная регрессионная модель, из которой определяются неизвестные коэффициенты A 1, A 2, …, B 1, B 2, …, C модели.
Поскольку коэффициенты модели определены, построим реализацию (см. рис. 6.2), имитирующую поведение системы, описанной фильтром Каллмана.
«Блок задержки» в представленной реализации необходим для того, чтобы сдвинуть сигнал на такт и получить соседний отсчет для следующей переменной ряда модели. В зависимости от среды реализации блок задержки можно организовать разными способами. Например, в случае реализации блока задержки в среде моделирования Stratum-2000, первый способ может быть основан на перезаписи информации из одной переменной (ячейки) в другую, на что требуется один такт. Таким образом, можно организовать задержку сигнала на любое число тактов. Например, задержка сигнала X относительно Y будет составлять 3 такта, если выполнить следующую последовательность операций: A1:= X; A2:= A1; Y:= A2. Во втором способе задержка организуется при помощи массива: на каждом такте нужно, чтобы цифры были перемещены в соседние ячейки. На рис. 6.3 приведена схема настройки (автоматического нахождения коэффициентов).
На рис. 6.4 приведена схема проверки фильтра Каллмана.
Модель динамической системы в виде Этот способ моделирования динамических систем основывается на том, что в любом сигнале присутствуют гармонические составляющие. В зависимости от частоты, составляющие называются гармониками (первая, вторая и так далее). Сумма гармоник с соответствующими весами составляет модель сигнала.
Пусть, например, в некотором сигнале присутствует сумма трех гармоник:3 · cos(t) + 2 · cos(3 t) + 0.5 · cos(5 t). Это значит, что в сигнале присутствует первая гармоника с амплитудой 3, третья гармоника с амплитудой 2, пятая гармоника с амплитудой 0.5. Сам суммарный сигнал выглядит так, как показано на рис. 7.1.
Спектр этого сигнала показан на рис. 7.2. Ясно, что в нашем примере больший вес (амплитуду) в сигнале имеет (более других представлена) первая гармоника, наименьший вес имеет пятая гармоника.
Любой сигнал, сколь сложен бы он ни был, может быть представлен суммой гармоник. Более простой сигнал представляется меньшим числом гармоник, более сложный — большим. Быстро меняющийся сигнал, содержащий резкие пики, имеет в своем составе гармоники высоких порядков. Чем больше гармоник представлено в модели сигнала, тем точнее, в общем случае, модель отражает реальный сигнал. Пусть задан некий сигнал X (t) (рис. 7.3).
Определимся со временем рассмотрения сигнала: если сигнал периодический, то время рассмотрения равно периоду p сигнала; если сигнал непериодический, то периодом сигнала считается все время его рассмотрения.
Ai и Bi — это веса соответствующих гармоник, присутствующих в сигнале; i — номер гармоники. Формулы их расчета называются прямым преобразованием Фурье. Значение 2π · i / p = ωi — это частота i -ой гармоники. Отметим также, что частота i -ой гармоники связана с частотой первой гармоники простым соотношением: ωi = i · ω 1. Отметим важную особенность данного способа представления: вместо всего сигнала во всех его подробностях достаточно хранить вектор чисел, представляющих весовые коэффициенты составляющих его гармоник: (A 0, A 1, A 2, …, B 1, B 2, …). То есть эти числа полностью характеризуют исходный сигнал, так как по ним сигнал можно полностью восстановить формулой обратного преобразования Фурье: Именно эти числа используются также при обработке сигнала в модели динамической системы. Изображение этих чисел на графике в зависимости от номера гармоники (частоты) называется спектром сигнала (рис. 7.4). Спектр показывает, насколько присутствует в сигнале соответствующая составляющая. Спектр — это частотная характеристика сигнала.
Здесь сигнал представлен в частотной области. Всегда по формулам прямого преобразования Фурье можно перейти из временной области в частотную, а по формулам обратного преобразования Фурье перейти из частотной области во временную. В какой области (частотной или временной) работать с сигналом в отдельный момент, решают из соображений удобства, наглядности и экономии вычислений. Заметим, что емкие с точки зрения вычислений операции интегрирования и дифференцирования сигнала во временной области заменяются на операции алгебраического сложения и умножения в частотной области, что с вычислительной точки зрения реализуется намного точнее и быстрее. Система чисел Ai и Bi является полной характеристикой сигнала. Такой же полной характеристикой сигнала является система чисел S и φ, которые также образуют спектр (рис. 7.5). S — это амплитудно-частотная характеристика (АЧХ), φ — фазо-частотная характеристика (ФЧХ).
Системы «A и B» и «S и φ» являются полностью равнозначными. Переход из системы «A и B» в систему «S и φ» производится по следующим формулам: Si = sqrt(Ai 2 + Bi 2) — абсолютная амплитуда сигнала; φi = arctg(Bi / Ai) — фаза сигнала, при сложении гармоник нужно учитывать сдвиг фаз (сдвиг фаз проиллюстрирован на рис. 7.8). В случае с системой «S и φ» обратное преобразование Фурье имеет вид: Рис. 7.6 и рис. 7.7 разъясняют смысл коэффициентов A и B разных гармоник. Эти коэффициенты — амплитуды синусов и косинусов соответствующих частот (гармоник). Во временной области графически они соответствуют размаху гармонических колебаний (рис. 7.6 и рис. 7.7); в частотной — высоте спектральной полоски на соответствующей частоте (рис. 7.4).
Смысл чисел Si и φi разъяснен на рис. 7.8.
Модель динамической системы в виде Пусть имеется входной динамический сигнал X (t) и объект F, преобразующий этот сигнал в выходной Y (t) (см. рис. 8.1). Если объект описывается дифференциальными уравнениями, то таким преобразованием является интегрирование входного сигнала и вычисление Y (t). Интегрирование, как было ранее показано, — операция, требующая значительных вычислительных ресурсов и имеющая значительную погрешность при реализации на цифровых машинах.
Если перейти от описания входного сигнала во временной области к описанию в частотной области (см. рис. 8.1), а от дифференциальных уравнений перейти к частотной характеристике объекта, — то есть, фактически, заменить сигнал на частотную модель сигнала, а объект на частотную модель объекта, — то с вычислительной точки зрения процесс преобразования сигнала упростится. Конечно, полученный результат тоже будет частотной моделью выходного сигнала, которую для получения окончательного ответа придется сконвертировать во временную область Y (t). Процесс такой конвертации из частотной области во временную и обратно называется преобразованием Фурье (есть и другие преобразования). Для тех объектов, для которых известна их модель в частотной области, такой подход достаточно просто реализуется на компьютере и позволяет достичь любой наперед заданной точности. Модель объекта в частотном виде называется передаточной функцией или АЧХ (амплитудно-частотной характеристикой). Объекты, для которых известны АЧХ, обычно называют типовыми звеньями (усилительное звено, апериодическое, колебательное и т. д.). Пусть, для примера, характеристика объекта в частотной области следующая (см. рис. 8.2).
Амплитудно-частотная характеристика (АЧХ) показывает, насколько пропускается объектом на выход соответствующая гармоника. Значение ki характеризует коэффициент усилeния гармонического сигнала на определенной частоте ωi. Моделирование прохождения сигнала через объект в этом виде заключается в умножении коэффициента Ai гармоники с частотой ωi входного сигнала X (t) на коэффициент усиления ki при той же гармонике с частотой ωi в АЧХ: Ai * = Ai (ωi) · ki (ωi). (Для коэффициента B преобразование аналогично.) В результате получается коэффициент Ai * выходной гармоники данной частоты ωi. Процедура выполняется для всех частот, представленных во входном сигнале и АЧХ. После получения спектра выходного сигнала можно восстановить сигнал как временную зависимость с помощьюформулы обратного преобразования Фурье.
Заметим главное: моделирование прохождения сигнала через динамический объект свелось к операции умножения двух переменных, точнее, к операции поэлементного умножения вектора одних переменных на вектор других переменных. Схема преобразования показана на рис. 8.3.
Если бы временной сигнал проходил через звено, которое во временной области представлено дифференциальным уравнением, то пришлось бы его интегрировать, что, конечно, приводит к погрешностям результата. В частотной области достаточно перемножить значения коэффициентов ряда Фурье сигнала и звена при одинаковых частотах. Очевидно, что достоинством метода является замена дифференциальных уравнений модели на алгебраические. Разумеется, данный подход может быть использован только для объектов, у которых известен вид передаточной функции. (Кстати, для неизвестных случаев АЧХ может быть получена численным разложением в ряд.) В процессе моделирования набора объектов для преобразования сигнала (например, протяженных трактов радиоэлектронных устройств) иногда приходится применять прямое и обратное преобразование Фурье неоднократно. На практике последовательные блоки часто называют каскадами. Пусть мы имеем радио-электронное устройство (РЭУ), состоящее из 5 блоков (см. рис. 8.4). Блоки 1, 2, 4, 5 — линейные и представлены соответствующими известными АЧХ; блок 3 — нелинейный, поэтому АЧХ для него неизвестна. Примером линейного блока может служить апериодическое звено, колебательное звено и т. д. (см. Лекцию 05. Динамические регрессионные модели, заданные в виде передаточной функции). Примером нелинейного блока может служить устройство ограничения сигнала (срез) по амплитуде. Как видно из рис. 8.4, сначала входной сигнал X (t) прямым преобразованием Фурье переводится в частотную область и проходит в виде спектра через АЧХ 1 и 2 линейного блока, затем обратным преобразованием Фурье сигнал после 2 блока переводится во временную область. Проходим нелинейный блок 3 во временном представлении. Результат работы блока 3 снова преобразуем прямым преобразованием Фурье в частотную область и проходим через АЧХ блоков 4 и 5. В конце полученный спектр преобразуется с помощью обратного преобразования Фурье во временную область, — вид сигнала, Z (t), является результатом моделирования.
Метод, который мы рассмотрели, является одним из самых быстродействующих. Это связано с заменой операций интегрирования и дифференцирования, встречающихся в моделях динамических звеньев, на операции сложения и умножения при переходе в частотную область. Такая процедура обеспечивает точность и быстродействие модели. Для метода важно, с какой частотой вы дискретизируете сигнал при разложении в ряд Фурье. Если частота дискретизации мала, то есть отсчеты в сигнале следуют редко, с большими интервалами, то часть сигнала остается потерянной, так как между отсчетами может оказаться резко возросший и опавший пик, информация о котором пропадет. То есть говорят, что малая частота дискретизации срезает высокие частоты в сигнале. (Пик — это и есть высокочастотная составляющая, которая может быть потеряна). По теореме Котельникова, чтобы не потерять соответствующую гармонику, требуется дискретизировать сигнал с частотой не менее чем в 2 раза большей, чем самая высокая частота из представленных в аналоговом сигнале: 2 W max ≤ W дискр., где W дискр. = 1/Δ t дискр. — частота дискретизации, W max — максимальная частота, присутствующая в сигнале. Оценка качества модели Оценка качества показывает, насколько теоретические вычисления по построенной модели отклоняются от экспериментальных данных. Наличие связи двух переменных называется корреляцией. Если оценка качества применяется до исследования, то она решает задачу: есть ли связь между входом X и выходом Y и оценивает силу этой связи.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|