Финансовая рента (аннуитет)
Важным частным случаем потока платежей является финансовая рента или просто рента (rent), называемая иногда также аннуитетом (annuity). Под финансовой рентой понимается поток платежей, у которого все выплаты одного знака и производятся через равные промежутки времени. Примером рент являются: квартирная плата, погашение кредита, пенсии, регулярные выплаты процентов, ипотека, страховые выплаты и т. д. Первоначально рассматривались лишь ежегодные выплаты (anno-год) отсюда название аннуитет (annuity). Интервал времени между выплатами называется периодом ренты (rent period, payment period); размер отдельного платежа – членом ренты (rent). Сроком ренты (temp) называется время от начала первого периода ренты до конца последнего периода. Если выплаты производятся в конце периода, то рента называется рента постнумерандо или обыкновенная рента (аннуитет постнумерандо или обыкновенный аннуитет, ordinary annuity). Если выплаты производятся в начале периода, то рента называется рента пренумерандо или авансированная рента (аннуитет пренумерандо или авансированный аннуитет, annuity due). Иногда выплаты ренты производятся в середине периода, например пенсии. Для безусловной ренты (annuity certain) заранее оговариваются моменты всех выплат – от первой до последней выплаты. Для условной ренты (contingent annuity) даты первой и последней выплаты зависят от какого-либо случайного события. Примером такой ренты являются страховые выплаты или пенсии (life annuity). Для описания и оценки условных рент создана бурно развивающаяся в настоящее время страховая (актуарная) математика. Существуют и бессрочные (вечные) ренты. Пример такой ренты это облигации Британского казначейства (Х1Х век), выплаты по ним производятся два раза в год по 2,5 % годовых.
Простая рента означает выплаты одной суммы, сложная рента предполагает выплаты переменных сумм. Проведем расчет простой ренты постнумерандо (см. рис. 3.4).
Рис. 3.4.
Если член ренты – с, а процентная ставка – r, то современная стоимость ренты будет равна:
Суммируя геометрическую прогрессию, по формуле Окончательно или Наращенная сумма S(n) согласно (3.2) будет равна:
Расчет простой ренты пренумеранто сводится к следующему потоку платежей (см. рис. 3.5).
Рис. 3.5.
Современная стоимость ренты равна:
Суммируя геометрическую прогрессию аналогично предыдущему, получим: Или окончательно
Для наращенной суммы получим:
Сравнивая (3.7) и (3.8) с (3.5) и (3.6), убеждаемся, что рента пренумерандо дороже ренты постнумерандо. Точнее справедлива формула: Sпренумерандо=(1+r)Sпостнумерандо. Для величины
называемой коэффициентом наращивания, существуют специальные таблицы. Однако в настоящее время его вычисление не составляет труда. Используя коэффициент наращивания, формулы (3.5) и (3.8) запишутся:
Непрерывная рента. Если выплаты ренты производятся достаточно часто и длительный промежуток времени, удобно от дискретной ренты перейти к непрерывной ренте. Рассмотрим соответствующий непрерывный поток платежей. Произведем расчет современного значения PV = S(0) и будущего значения FV = S(tk) для данного потока платежей. ПустьC(t) dt – значение платежа в момент времени t за промежуток времени dt, срок ренты равен tk,начало ренты в момент 0 конец в момент tk. В общем случае предполагается возможность выплаты переменных сумм C(t).
0 t Рис 3.6.
Для оценки непрерывного потока платежей рассчитаем современное значение или приведенную к начальному моменту денежную сумму S(0) = PV.Предположим, что процентная ставка равна r. Тогда, платеж C(t) dtв пересчете на начальный момент должен дисконтироваться, то есть умножаться на число меньше единицы равное e- r t (см. формулу (2.12) для непрерывных процентов) и дисконтированный платеж будет равен e-r t C (t) dt. При этом приращение современного значения S(0) будет равно:
После интегрирования дифференциального уравнения по всему сроку рентыотначала ренты в момент 0 до конца ренты в моментtkполучим дляоценкисовременного значения непрерывной ренты следующий интеграл:
Формула применима для оценки сложной ренты, когда предполагаются выплаты переменных сумм C (t). Простая непрерывная рента: Если рента предполагает выплату постоянно одной и той же суммы С, то рента называется простой. Произведем расчет современного значения PV = S(0) и будущего значения FV = S(tk) для данного потока платежей. В этом случае имеем C(t) = C и соответствующий интеграл может быть легко вычислен: Окончательно для современного значения получаем:
Учитывая, что длительность сделки равна tk, а процентная ставка равна r, будущее значение S(tk) по формуле непрерывных процентов (2.12) будет равно: Отсюда окончательно получим для простой непрерывной ренты будущее значение:
Иногда момент окончания сделки удобно принять за tk = n тогда выведенные выше формулы будут иметь чуть более компактный вид. Для непрерывной ренты имеем современное значение:
Формула для бессрочной (вечной ренты) получается из (3.5) или (3.14) предельным переходом при
Для непрерывной ренты наращенная сумма будет равна:
Рассмотрим примеры использования полученных формул. Кредит 5 млн руб. погашается 12 равными ежемесячными взносами. Найти сумму выплат при ставке 12 % годовых. Решение. Воспользуемся формулой (3.4):
где S(0)=5 млн руб.; число периодов начисления n=12, r=1%=0,01 – годовая ставка, пересчитанная на 1 месяц, т. е. Тогда, согласно (3.5) имеем:
отсюда:
Подставляя числа, получим:
Пример 33. Для приобретения недвижимости стоимостью 60 тыс. $ берется кредит под 6 % годовых. Согласно контракту погашение кредита происходит каждый месяц в течение 30 лет. Какова сумма месячного платежа?
Решение. Длительность ренты в месяцах равна 360. Воспользуемся формулой (3.4) для установления связи между неизвестным членом ренты с, современной стоимостью ренты S(0)=60 тыс. $ и месячной процентной ставкой
Отсюда, сумма месячного платежа равна:
Если воспользоваться формулами для непрерывной ренты (3.10), получим:
Очевидно, что суммы ежемесячного платежа, рассчитанные по непрерывным и дискретным формулам, близки.
Пример 34. Кредит погашается в течение года ежемесячными платежами в размере 2 тыс. руб., годовая процентная ставка составляет 12 %. Необходимо найти величину кредита. Решение Воспользуемся сначала формулой (3.5) вычисления современного значения обыкновенной дискретной ренты: В нашей задаче член ренты равен c = 2 тыс. руб., срок ренты n = 12 месяцев, месячная процентная ставка равна r = 12 %/12 = 1 % (1/мес.), а неизвестной является величина кредита S(0). Тогда:
В непрерывном случае для решения воспользуемся формулой:
Получаем:
Сумма кредита составляет 22616 руб. ‑ она чуть больше суммы 22510 руб., рассчитанной по дискретной формуле.
Пример 35. Планируется покупка автомобиля FORD F650 стоимостью $250 тыс. через 5 лет. Необходимо найти сумму, которую будем откладывать ежемесячно в течение указанного срока под годовую процентную ставку 6 % для осуществления запланированной покупки. Решение Воспользуемся сначала формулой (3.6) вычисления будущего значения обыкновенной дискретной ренты: В нашей задаче член ренты c неизвестен, а известны: срок ренты n=5*12=60 месяцев, месячная процентная ставка равна r=6%/12=0,5%=0,005 (1/мес.), и будущее значение S(n)=$250 тыс. Тогда,
В непрерывном случае для решения воспользуемся формулой (3.15): Откуда
Ежемесячно необходимо откладывать суммы в размере $ 3572,87 ‑ при расчете по непрерывным процентам или $ 3583,2 ‑ при расчете по дискретным процентам. Пример 36 В момент рождения ребенка родители начинают откладывать ежемесячно $C на его обучение в университете. Плата за весь срок обучения составляет $100 тыс. и вносится в момент поступления ребенка в университет. Ребенок поступает в университет в возрасте 17 лет. Банковская ставка составляет 6 % в год. Найти величину $C.
Решение Задача решается аналогично предыдущему примеру 35. Известны: срок ренты: n=17*12=204 месяцев, месячная процентная ставка равна r=6%/12=0,5%=0,005 (1/мес.), и будущее значение S(n)=$100 тыс. Нужно найти месячный платеж (член ренты) с: Дискретный расчет
Непрерывный случай
На обучение ребенка в университете нужно откладывать ежемесячно $283,1 при дискретном расчете или =$281,98 при непрерывном расчете. Пример 37 В конце каждого месяца на сберегательный счет инвестируется 2 тыс. руб. На поступающие платежи ежемесячно начисляются сложные проценты по годовой ставке 12 %. Какова величина вклада через 2 года? Какую сумму нужно разместить инвестору на депозитный счет для получения такой же величины вклада через 2 года в предположение, что проценты начисляются по той схеме – ежемесячно? Решение Из условия примера член ренты C=2 тыс. руб., длительность ренты n=24 (мес.), месячная процентная ставка r =12%/12=1%=0,01 (1/мес.). Сначала, для определения величина вклада через 2 года воспользуемся формулой (3.6) вычисления будущего значения обыкновенной дискретной ренты
Затем, для определения суммы, которую нужно разместить инвестору на депозитный счет, воспользуемся формулой (3.5) вычисления современного значения обыкновенной дискретной ренты:
Таким образом, размещение суммы 42,48677 тыс. руб. на депозитный счет для начисления ежемесячно сложных процентов по годовой ставке 12 % позволит инвестору получить ту же сумму вклада 53,9493 тыс. руб.
Пример 38 Банк N дает кредит под 24 % годовых. Один из вариантов кредитного договора имеет следующий вид: «Кредит на 50 тыс. руб. погашается ежемесячными платежами в размере 2 тыс. руб. Половина суммы идет на обслуживание кредита, другая половина – на погашение кредита. Банк N дополнительно сообщает клиенту о моменте погашения кредита». Таким образом, ежемесячно в счет погашения заемщик платит 1 тыс. руб. Сколько должно быть выплат, чтобы погасить кредит? Каков срок погашения кредита, если процентная ставка будет снижена до 12 % или повышена до 28 % годовых? Решение В нашей задаче член ренты равен c = 1 тыс. руб., месячная процентная ставка равна r = 24%/12 = 2 % = 0,02 (1/мес.), величина кредита S(0)=50 тыс. руб., а неизвестным является срок ренты n. Воспользуемся формулой (3.14) вычисления современного значения непрерывной ренты:
Отсюда найдем количество выплат n или Окончательно
В нашем случае имеем S(0) = 50 тыс.руб.; C = 1 тыс. руб.; r=0,02. Подставив исходные данные в полученную формулу, вычислим количество выплат n Так как, Таким образом, срок погашения кредита равен +∞, то есть клиент, заключивший договор с банком N, будет должен ему вечно. Возможно, в рассуждениях и расчетах имеется ошибка, рассмотрим задачу с другой стороны. Если сумма выплат С постоянна, а количество выплат n стремится к бесконечности, то для современного значения PV=S(0) такого потока платежей получим формулу (3.15): В рассматриваемом случае, если клиент банка будет платить по тысяче рублей ежемесячно под r=2 % в месяц вечно, то он погасит кредит. Действительно
Пусть теперь процентная ставка снижена до 12 %. Рассчитаем количество выплат n при этом значения процентной ставки r=12 %/12=1 %=0,01 Таким образом, для погашения кредита в 50 тыс. руб. на условиях предложенных банком N при небольшом проценте 12 % годовых потребуется 70 выплат по 2 тыс. руб. т. е. 140 тыс. руб. в течение 70/12=5,8333 лет. Если процентная ставка будет повышена до 28 %, то современное значение PV=S(0) при r=28 %/12=2,333% и C=1 тыс. руб. для бесконечного потока платежей равно:
Полученная величина меньше суммы кредита в 50 тыс. руб., то есть, при годовой ставке в 28 %, даже выплачивая вечно, не удастся погасить сумму кредита. Потомки неосторожного клиента банка N будут перед ним в вечном долгу. Для полноты приведем решение данного примера с использованием формулы дискретной ренты: Отсюда число периодов начисления равно:
Формулы (3.18) и (3.19) отличаются только знаменателем, но при малых значениях процентной ставки r согласно замечательному пределу ln (1+r) примерно равен r и знаменатели практически совпадают и, следовательно, все полученные выше результаты остаются в силе. Пример 39. Ссуда в 10 млн руб. выдана под 12 % годовых (т. е. 1 % месячных) и требует ежемесячной оплаты по 130 тыс. руб. и выплаты остатка долга к концу срока в 10 лет. Каков остаток долга D? Решение. В задаче месячная ставка равна r=1 % (1/мес.), число выплат n=10*12=120 (мес.), ежемесячные выплаты c=130 тыс. руб.=0,13 млн руб., ссуда равна S(0)=10 млн руб. Неизвестным является остаток долга D. Поток платежей для данной задачи имеет вид:
Рис. 3.7.
Следовательно, приведенный доход S(0)=PV равен: Отсюда, остаток долга: Подставляя численные значения, получим:
Следовательно, долг равен D=3,098839 млн руб. Задача 12 Владелец оливковой рощи сдал её в «вечную» аренду. Арендатор, начиная с 2010 года, переводит 1 января каждого года на банковский счет владельца оливковой рощи арендный платеж в размере $40 тыс. Банк ежегодно начисляет на вклад сложные проценты, исходя из годовой процентной ставки 5 %. Какова выкупная цена оливковой рощи на 1 января 2010 года? Найти выкупную цену оливковой рощи на 1 января 2015 года. Ответы и указания: Выкупная цена оливковой рощи на 1 января 2010 года определяется по формуле вечной ренты пренумерандо:
Выкупная цена оливковой рощи на 1 января 2015 года равна:
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|