2. Задачи для контрольных работ
2. ЗАДАЧИ ДЛЯ КОНТРОЛЬНЫХ РАБОТ 2. 1. Физические основы механики Кинематика 1. Определить модуль скорости материальной точки в момент времени t = 2 c, если точка движется по закону , где a = 2 м/с2 ; b = 3 м. 2. Материальная точка движется по закону , где a = 2 м; b = 3 м. Определить вектор скорости, вектор ускорения и траекторию движения материальной точки. 3. Радиус-вектор частицы изменяется со временем по закону: (м). Найти: а) скорость и ускорение частицы; 4. Частица движется со скоростью , где a = 1 м/с2. Найти: а) модуль скорости u частицы в момент времени t1 = 2 c; б) ускорение частицы и его модуль; в) путь S, пройденный частицей с момента t1 = 2 c до момента t2 = 3 c. 5. Зависимость пройденного телом пути от времени задается уравнением S = A + B t + C t2 + D t3 (C = 0, 1 м/с2, D = 0, 03 м/с3). Определить: 1) время после начала движения, через которое ускорение а тела будет равно 2 м/с2; 2) среднее ускорение á аñ тела за этот промежуток времени. 6. Тело брошено с высоты 25 м вертикально вверх со скоростью 20 м/с. Найти путь и среднюю скорость движения тела (до момента падения). 7. Звук выстрела и пуля одновременно достигают высоты 990 м. Выстрел произведён вертикально вверх. Определить начальную скорость пули. Средняя скорость звука в воздухе 330 м/с. 8. Вертолёт летит горизонтально со скоростью 40 м/с на высоте 45 м. С вертолета нужно сбросить груз на баржу, движущуюся в том же направлении со скоростью 2 м/с. На каком расстоянии, не долетев до баржи, летчик должен освободить крепеж груза? 9. Тело брошено вертикально вверх с начальной скоростью u0 = 4 м/с. Когда оно достигло верхней точки полета, из того же начального пункта, с той же начальной скоростью u0 вертикально вверх брошено второе тело. На каком расстоянии h от начального пункта встретятся тела? Сопротивление воздуха не учитывать.
10. Материальная точка движется прямолинейно с ускорением а = 5 м/с2. Определить, на сколько путь, пройденный точкой в n-ю секунду, будет больше пути, пройденного в предыдущую секунду. Принять u0 = 0. 11. Две автомашины движутся по дорогам, угол между которыми a = 60°. Скорости автомашин u1 = 54 км/ч и u2 = 72 км/ч. С какой скоростью u удаляются машины одна от другой? 12. Скорость течения реки u = 3 км/ч, а скорость движения лодки относительно воды u1 = 6 км/ч. Определить, под каким углом относительно берега должна двигаться лодка, чтобы проплыть поперек реки. 13. Два электропоезда проследовали со скоростью 60 км/ч мимо 14. Пловец переплывает реку по прямой, перпендикулярной берегу. Во сколько раз скорость пловца относительно воды больше скорости течения реки, если угол между векторами скорости пловца относительно воды и относительно берега равен 45°. 15. Материальная точка движется прямолинейно с начальной скоростью u0 = 10 м/с и постоянным ускорением a = 5 м/с2. Определить, во сколько раз путь DS, пройденный материальной точкой, будет превышать модуль ее перемещения Dr спустя t = 4 c после начала отсчета времени. 16. Велосипедист ехал из одного пункта в другой. Первую треть пути он проехал со скоростью u1 = 8 км/ч. Далее половину оставшегося времени он ехал со скоростью u2 = 22 км/ч, после чего до конечного пункта он шел пешком со скоростью u3 = 5 км/ч. Определить среднюю скорость á añ велосипедиста.
17. Камень, брошенный по льду со скоростью u0 = 5 м/с, останавливается на расстоянии S = 25 м от места бросания. Определить путь, пройденный камнем за первые t1 = 2 c движения. 18. Тело падает с высоты h = 1 км с нулевой начальной скоростью. Пренебрегая сопротивлением воздуха, определите, какое время понадобится телу для прохождения: 1) первых 10 м пути; 2) последних 10 м 19. Тело, брошенное вертикально вверх, находилось на одной и той же высоте h = 8, 6 м два раза с интервалом Dt = 3 с. Пренебрегая сопротивлением воздуха, вычислить начальную скорость брошенного тела. 20. Пренебрегая сопротивлением воздуха, определить угол, под которым тело брошено к горизонту, если максимальная высота подъема тела равна 1/4 дальности его полета. 21. С башни высотой H = 40 м брошено тело со скоростью u0 = 20 м/с под углом a = 45° к горизонту. Пренебрегая сопротивлением воздуха, определить: 1) время движения тела; 2) на каком расстоянии от основания башни тело упадет на землю; 3) скорость падения тела на землю; 4) угол, который составит траектория тела с горизонтом в точке его падения. 22. Мяч брошен с поверхности Земли со скоростью u0 = 10 м/с под углом a = 60° к горизонту. Определить радиус кривизны его траектории в верхней точке подъема R1 и в момент падения на Землю R2. 23. Тело брошено под углом a = 30° к горизонту со скоростью u0 = 30 м/с. Каковы будут нормальное an и тангенциальное at ускорения тела через время t = 1 c после начала движения? 24. Из пушки выпустили последовательно два снаряда со скоростью u0 = 250 м/с: первый под углом j1 = 60° к горизонту, второй – под углом j2 = 45° (азимут один и тот же). Найти интервал времени между снарядами, при котором снаряды столкнутся друг с другом. 25. Под каким углом к горизонту надо бросить шарик, чтобы радиус кривизны в начале его траектории был в h = 8, 0 раз больше, чем в вершине? 26. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны 50 м. Уравнение движения автомобиля s = 10 + 10t - 0, 5t2 (м). Найти скорость автомобиля, а также его тангенциальное, нормальное и полное ускорение в момент времени t = 5 c. 27. Пистолетная пуля пробила два вертикально закрепленных листа бумаги, расстояние между которыми 30 м. Пробоина во втором листе оказалась на 10 см ниже, чем в первом. Определить скорость пули, если к первому листу она подлетела, двигаясь горизонтально.
28. Мяч, брошенный горизонтально, ударяется о стенку, находящуюся на расстоянии 5 м от места бросания. Высота места удара мяча о стенку на 1 м меньше высоты, с которой был брошен мяч. С какой скоростью был брошен мяч? Под каким углом он подлетел к поверхности 29. Два тела брошены одновременно из одной точки: одно – вертикально вверх, другое – под углом a = 60° к горизонту. Начальная скорость каждого тела 25 м/с. Пренебрегая сопротивлением воздуха, найти расстояние между телами через 1, 7 с. 30. Колесо вращается с постоянной скоростью, соответствующей 100 об. /мин. С некоторого момента колесо тормозится и вращается равнозамедленно с угловым ускорением 3 рад/с2. Через какое время колесо остановится? 31. На цилиндр, который может вращаться около горизонтальной оси, намотана нить. К концу нити привязали груз и предоставили ему 32. Минутная стрелка часов в 3 раза длиннее секундной. Найти соотношение между линейными скоростями концов этих стрелок. 33. Колесо радиусом R = 0, 1 м вращается так, что зависимость угловой скорости от времени задается уравнением w = 2A t + 5B t (A = 2 рад/с2, B = 1 рад/с5). Определить полное ускорение точек обода колеса через t = 1 с после начала вращения и число оборотов, сделанных колесом за это время. 34. Нормальное ускорение точки, движущейся по окружности радиусом r = 4 м, задается уравнением an = A + B t + C t2, A = 1 м/с2, B = 6 м/с3, C = 3 м/с4. Определить: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время t1 = 5 с после начала движения; 3) полное ускорение для момента времени t2 = 1 с. 35. Частота вращения колеса при равнозамедленном движении за t = 1 мин уменьшилась от 300 до 180 с – 1. Определить: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время.
36. Диск радиусом R = 10 см вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением j = A + B t + C t2 + D t3 (B = 1 рад/с, C = 1 рад/с2, D = 1 рад/с3). Определить для точек на ободе колеса к концу второй секунды после начала движения: 1) тангенциальное ускорение at; 2) нормальное ускорение an; 3) полное ускорение a. 37. Материальная точка движется по окружности с постоянной угловой скоростью w = p / 6 рад/с. Во сколько раз путь Ds, пройденный точкой за время t = 4 с, будет больше модуля ее перемещения Dr? Принять, что в момент начала отсчета времени радиус-вектор r, задающий положение точки на окружности, относительно исходного положения был повернут на угол j0 = p / 3 рад. 38. Материальная точка движется в плоскости x y согласно уравнениям: x = A1 + B1 t + C1 t2 и y = A2 + B2 t + C2 t2, где B1 = 7 м/с, C1 = 2 м/с2, B2 = – 1 м/с, C2 = 0, 2 м/с2. Найти модули скорости и ускорения точки в 39. По краю равномерно вращающейся с угловой скоростью w = 1 рад/с платформы идет человек и обходит платформу за время t = 9, 9 с. Каково наибольшее ускорение a движения человека относительно Земли? Принять радиус платформы R = 2 м. 40. Точка движется по окружности радиусом R = 30 см с постоянным угловым ускорением. Определить тангенциальное ускорение at точки, если известно, что за время t = 4 с она совершила три оборота и в конце третьего оборота ее нормальное ускорение an = 2, 7 м/с2.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|