Лекция 15. Реальные газы. Фазовые равновесия и превращения
Лекция 15. Реальные газы. Фазовые равновесия и превращения Реальные газы. Молекулярные силы. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и экспериментальные изотермы реальных газов. Внутренняя энергия реального газа. Эффект Джоуля-Томсона. Фазы и фазовые превращения. Условия равновесия фаз. Фазовые диаграммы. Уравнение Клапейрона-Клаузиуса. Метастабильные состояния. Критическая точка. Тройная точка. Фазовые переходы 1-го и 2-го рода. 15. 1. Реальные газы. Молекулярные силы. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и экспериментальны изотермы реальных газов
Прежде всего, при сближении начинают проявляться силы притяжения F< 0 (рис. 15. 1). Однако когда молекулы подойдут " вплотную" друг к другу и " соприкасаются" своими оболочками, то дальнейшее их сближение затрудняется. Между электронными оболочками возникнут огромные силы отталкивания, резко возрастающие по мере дальнейшего проникновения оболочек друг в друга. Начинают преобладать силы отталкивания F> 0. На нижнем графике дана зависимость потенциальной энергии взаимодействия молекул от расстояния между их центрами U(r). Когда результирующая сила межмолекулярного взаимодействия равна нулю (при r=r0) потенциальная энергия минимальна, Wp min< 0, т. е. для удаления молекул друг от друга необходимо, чтобы внешние силы, совершили работу.
Между тремя основными агрегатными состояниями имеется значительное расхождение в величине энергии межмолекулярного взаимодействия. Так, например, для: 1) газов кТ> > Wp min; 2) кристаллических твердых тел кТ< < Wp min; 3) жидкостей кТ»Wp min. Движение молекул и структура вещества существенно зависят от соотношения энергии теплового движения и потенциальной энергии взаимодействия между молекулами. Если моль газа находится при нормальных условиях (p@105, T»300К), то молекулы настолько удалены друг от друга, что их взаимодействием можно пренебречь, можно пренебречь также и их линейными размерами. Поэтому для этих условий хорошо выполняется уравнение состояния идеального газа, уравнение Менделеева - Клапейрона
Поправку на собственный объем молекул можно ввести из следующих соображений. Очевидно, молекула не может находиться в тех местах, где размещены остальные N-1 молекула. Для каждой пары взаимодействующих молекул недоступной является та часть объема, в которой расстояние между их центрами равно d, т. е. сфера радиуса d (рис. 15. 2), объем которой составляет (4/3)pd3, для всех молекул недоступным является объем Сомножитель 1/2 появился вследствие того, что при парном взаимодействии недоступным считается объем, образованный половиной (N/2) молекул. Итак, поправка на недоступный (" собственный" ) объем составляет
Ударяющиеся о стенку сосуда, в котором находится газ, молекулы, притягиваются остальными молекулами, следовательно, давление газа на стенки сосуда уменьшается на некоторую среднюю величину p' (давление p' иногда называют внутренним давлением). Вводя в уравнение (15. 2) поправку на внутреннее давление, будем иметь
Уравнение (15. 3) - уравнение состояния моля или киломоля реального газа, уравнение Ван-дер-Ваальса. Для произвольной массы газа его можно записать в следующем виде
Это уравнение представляет собой уравнение 3ей степени относительно объема V
Следовательно, при данных значениях p и Т, известных значениях a и b оно имеет три решения (V1< V2< V3). При этом корни уравнения либо все три вещественные, либо один вещественный и два мнимых (комплексно сопряженных), не имеющих физического смысла. Задавая различные значения p, решая уравнение Ван-дер-Ваальса для нескольких избранных, но постоянных значений температуры газа T, можно построить семейство изотерм Ван-дер-Ваальса, представленных на рис. 15. 4.
При уменьшении температуры форма изотерм изменяется и при некотором значении T = Tк, изотермы имеют точку перегиба " К". В области T< Tk имеется интервал давлений, в котором уравнение (15. 3) имеет три вещественных корня. Наибольший корень V3 соответствует наименьшей плотности вещества и относится к газовому состоянию. Наименьший корень V1 к наиболее плотному бесструктурному состоянию, т. е. к жидкости. Средний корень V2, приходящийся на восходящую ветвь изотермы, соответствует неустойчивому, а поэтому практически ненаблюдаемому состоянию. Действительно, любое флуктуационное изменение объема V2 влечет за собой такое изменение давления газа, при котором точка изотермы, характеризующая его состояние, неизбежно переходит с восходящей ветви кривой на нисходящую ветвь. В точке K на изотерме Tk все три корня уравнения Ван-дер-Ваальса вещественны и равны (V1=V2=V3=Vk). Такое состояние газа называется критическим и, ему соответствуют определенные значения pk, Vk, Tk. Так как, согласно теореме Безу (V – Vk)3 = 0, то из сравнения коэффициентов при соответствующих степенях в (15. 5) получим
Откуда
Таким образом, по экспериментально найденным значениям Vk и Tk, для данной массы вещества, из системы уравнений (15. 7) можно определить параметры газа " a" и " b" и значение pk. По известным " a", " b" и R – критические параметры газа (pk, Tk и соответствующий массе газа объем Vk). В табл. 15. 1 приведены значения pk и Tk для некоторых жидкостей. Как видно, критическая температура приблизительно в 1, 5 раза превышает температуру кипения жидкости при нормальном внешнем давлении.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|