Цветность комплексных соединений
С 54. Многие комплексные соединения в кристаллическом состоянии и водном растворе отличаются яркой окраской. Так, водный раствор, содержащий катионы [Cu(NH3)4]2+, окрашен в интенсивно синий цвет, катионы [Ti(H2O)6]3+ придают раствору фиолетовую окраску, а катионы [Co(NH3)5H2O]2+ - красную. Теория кристаллического поля позволяет объяснить появление той или иной окраски у комплексных соединений. ● Если через раствор или кристаллический образец вещества пропускать свет видимой части спектра, то в принципе возможны три варианта физического поведения образца: отсутствие поглощения света любой длины волны (образец вещества бесцветен, хотя может иметь полосы поглощения в УФ и ИК области спектра); полное поглощение света во всем интервале длин волн (образец будет казаться черным); наконец, поглощение света только определенной длины волны (тогда образец будет иметь цвет, дополнительный к поглощенному узкому участку спектра). Таким образом, цвет раствора или кристаллов определяется частотой полос поглощения видимого света: Поглощение квантов света комплексами (например, имеющими октаэдрическое строение) объясняется взаимодействием света с электронами, находящимися на d e-подуровне, сопровождаемое их переходом на вакантные орбитали d g-подуровня. С 55. Например, при пропускании света через водный раствор, содержащий катионы гексаакватитанат(III) [Ti(H2O)6]3+, обнаруживается полоса поглощения света в желто-зеленой области спектра (20300 см-1, l» 500 нм). Это связано с переходом единственного электрона комплексообразователя с d e-АО на d g-подуровень: Поэтому раствор, содержащий [Ti(H2O)6]3+, приобретает фиолетовый цвет (дополнительный к поглощенному желто-зеленому).
Раствор соли ванадия [V(H2O)6]Cl3 имеет зеленый цвет. Это также обусловлено соответствующими переходами электронов при поглощении ими части энергии светового луча. В основном состоянии, при электронной конфигурации ванадия(III) 3 d 2, два неспаренных электрона занимают d e-подуровень: Существует всего два варианта перехода двух электронов на d g-подуровень: либо оба электрона занимают d g-АО, либо только один из них. Любые другие переходы электронов, связанные с уменьшением суммарного спина, запрещены. Если комплексообразователь имеет электронную конфигурацию d 0 или d 10, то переходы электронов с d e- на d g-подуровень или наоборот невозможны либо из-за отсутствия электронов, либо из-за отсутствия вакантных орбиталей. Поэтому растворы комплексов с такими комплексообразователями, как Sc(III), Cu(I), Zn(II), Cd(II) и т.п., не поглощают энергии в видимой части спектра и кажутся бесцветными: Избирательность поглощения света зависит не только от комплексообразователя и степени его окисления, но и от вида лигандов. При замене в комплексном соединении лигандов, находящихся в левой части спектрохимического ряда, на лиганды, создающие сильноеэлектростатическое поле, наблюдается увеличение доли энергии, поглощаемой электронами из проходящего света и как следствие –уменьшение длины волны соответствующей полосы поглощения. Так, водный раствор, содержащий катионы тетрааквамеди(II)[Cu(H2O)4]2+, окрашен в голубой цвет, а раствор сульфата тетраамминмеди(II) [Cu(NH3)4]2+ имеет интенсивно синюю окраску. ________________________ Магнитные свойства Среди химических соединений, в том числе комплексных, различают парамагнитные и диамагнитные, по разному взаимодействующие с внешним магнитным полем. Парамагнитные комплексы обладают моментом µ и поэтому при взаимодействии с внешним магнитным полем втягиваются в него. Напротив, диамагнитные комплексы, не имея собственного магнитного момента, выталкиваются из внешнего магнитного поля. Парамагнитные свойства веществ обусловлены наличием в их структуре неспаренных электронов и в случае комплексов объясняются специфическим заполнением электронами энергетических уровней.
Из Брауна и Лемея Существуют два принципа, определяющих заполнение электронами d-орбиталей, расщепленных на dε и dγ –подуровни 1. Электроны заполняют орбитали так, чтобы число неспаренных электронов было максимальным (правило Хунда). 2. Сначала заполняются орбитали, имеющие меньшую энергию. С учетом этих правил при числе d-электронов в комплексообразователе от 1 до 3 или 8, 9, 10 их можно расположить по d-орбиталям только одним способом (в соответствии с правилом Хунда). При числе электронов от 4 до 7 в октаэдрическом комплексе возможно либо занятие орбиталей, уже заполненных одним электроном, либо заполнение свободных dγ -орбиталей более высокой энергии. В первом случае потребуется энергия на преодоление отталкивания между электронами, находящимися на одной и той же орбитали, во втором — для перехода на орбиталь более высокой энергии. Распределение электронов по орбиталям зависит от соотношения между величинами энергий расщепления (Δ) и спаривания электронов (Р). При низких значениях Δ («слабое поле»), величина Δ может быть < Р, тогда электроны займут разные орбитали, а спины их будут параллельны. При этом образуются внешнеорбитальные (высокоспиновые) комплексы, характеризующиеся определённым магнитным моментом µ. Если энергия межэлектронного отталкивания меньше, чем Δ («сильное поле»), то есть Δ > Р, происходит спаривание электронов на dε -орбиталях и образование внутриорбитальных (низкоспиновых) комплексов, магнитный момент которых µ =0. В отличие от метода валентных связей, ТКП, основываясь на электронной конфигурации центрального атома, положении лигандов в спектрохимическом ряду и симметрии комплекса, позволяет не только объяснять, но и предсказывать магнитные и спектроскопические свойства комплексов.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|