Глава 6. Квантовомеханические теории строения комплексных соединений
С 35. Химические связи в КС отличаются большим разнообразием, что обусловлено всевозможными сочетаниями ковалентных связей разной полярности, кратности и степени делокализации электронных пар. В разделе рассматриваются основные понятия теории валентных связей ТВС (метода валентных связей) и теории кристаллического поля. ТКП Теория валентных связей С 36. Теория валентных связей была первой из квантовомеханических теорий, использованной для приближенного объяснения характера химических связей в КС. В основе ее применения лежала идея о донорно-акцепторном механизме образования ковалентных связей между лигандом и комплексообразователем. 1) Лиганд считается донорной частицей, способной передать пару электронов акцептору – комплексообразователю, предоставляющему для образования связи свободные квантовые ячейки (АО) своих энергетических уровней. 2) Для образования ковалентных связей между комплексообразователем и лигандами необходимо, чтобы вакантные s-, p- или d-атомные орбитали комплексообразователя подверглись гибридизации определенного типа. Гибридные орбитали занимают в пространстве определенное положение, причем их число соответствует КЧ комплексообразователя. 3) При этом часто происходит объединение неспаренных электронов комплексообразователя в пары, что позволяет высвободить некоторое число квантовых ячеек – АО, которые затем участвуют в гибридизации и образовании химических связей. 4) Неподеленные пары электронов НЭП лигандов взаимодействуют с гибридными орбиталями комплексообразователя, и происходит перекрывание соответствующих орбиталей комплексообразователя и лиганда с появлением в межъядерном пространстве повышенной электронной плотности.
5) Электронные пары комплексообразователя, в свою очередь, взаимодействуют с вакантными АО лиганда, упрочняя связь по дативному механизму. Таким образом, химическая связь в комплексных соединениях является обычной ковалентной связью, достаточной прочной и энергетически выгодной. С 37. Электронные пары, находящиеся на гибридных орбиталях комплексообразователя, стремятся занять в пространстве такое положение, при котором их взаимное отталкивание будет минимально. Это приводит к тому, что структура комплексных ионов и молекул оказывается в определенной зависимости от типа гибридизации. Рассмотрим образование некоторых комплексов с позиций ТВС. Прежде всего отметим, что валентные орбитали атомов комплексообразователей близки по энергии: E (n -1) d » Ens» Enp» End
●С. Например, катион [Zn(NH3)4]2+ включает комплексообразователь цинк(II). Электронная оболочка иона Zn2+ имеет формулу [Ar] 3 d 10 4 s 0 4 p 0 и может быть условно изображена так: Вакантные 4 s - и 4 p -орбитали атома цинка(II) образуют четыре sp 3-гибридные орбитали, ориентированные к вершинам тетраэдра. Поскольку в ионе [Zn(NH3)4]2+ нет неспаренных электронов, то он проявляет диамагнитные свойства.
● Тетрахлороманганат(II)-ион [MnCl4]2- содержит пять неспаренных электронов на 3 d -орбиталях и вакантные 4 s - и 4 p -орбитали. Вакантные орбитали образуют sp 3-гибридные орбитали, которые перекрываются с p -атомными орбиталями хлорид-ионов: Полученный таким образом тетраэдрический ион [MnCl4]2- является парамагнитным, так как содержит пять неспаренных электронов.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|