Решение с исследованием функции
Пример Докажите, что все решения уравнения
--- целые числа.
Решение. Основной период исходного уравнения равен . Поэтому сначала исследуем это уравнение на отрезке . Преобразуем уравнение к виду: При помощи микрокалькулятора получаем: Находим:
Если , то из предыдущих равенств получаем: Решив полученное уравнение, получим: . Выполненные вычисления представляют возможность предположить, что корнями уравнения, принадлежащими отрезку , являются , и . Непосредственная проверка подтверждает эту гипотезу. Таким образом, доказано, что корнями уравнения являются только целые числа , .
Пример Решите уравнение .
Решение. Найдём основной период уравнения. У функции основной период равен . Основной период функции равен . Наименьшее общее кратное чисел и равно . Поэтому основной период уравнения равен . Пусть . Очевидно, является решением уравнения. На интервале . Функция отрицательна. Поэтому другие корни уравнения следует искать только на интервалаx и . При помоши микрокалькулятора сначала найдем приближенные значения корней уравнения. Для этого составляем таблицу значений функции на интервалах и ; т. е. на интервалах и .
Из таблицы легко усматриваются следующие гипотезы: корнями уравнения, принадлежащими отрезку , являются числа: ; ; . Непосредственная проверка подтверждает эту гипотезу.
Ответ. ; ; . ТРИГОНОМЕТРИЧЕСКИЕ НЕРАВЕНСТВА
Решение тригонометрических неравенств с помощью единичной окружности
При решении тригонометрических неравенств вида , где --- одна из тригонометрических функций, удобно использовать тригонометрическую окружность для того, чтобы наиболее наглядно представить решения неравенства и записать ответ. Основным методом решения тригонометрических неравенств является сведение их к простейшим неравенствам типа . Разберём на примере, как решать такие неравенства.
Пример Решите неравенство .
Решение. Нарисуем тригонометрическую окружность и отметим на ней точки, для которых ордината превосходит . Для решением данного неравенства будут . Ясно также, что если некоторое число будет отличаться от какого-нибудь числа из указанного интервала на , то также будет не меньше . Следовательно, к концам найденного отрезка решения нужно просто добавить . Окончательно, получаем, что решениями исходного неравенства будут все . Ответ. . Для решения неравенств с тангенсом и котангенсом полезно понятие о линии тангенсов и котангенсов. Таковыми являются прямые и соответственно (на рисунке (1) и (2)), касающиеся тригонометрической окружности.
Легко заметить, что если построить луч с началом в начале координат, составляющий угол с положительным направлением оси абсцисс, то длина отрезка от точки до точки пересечения этого луча с линией тангенсов в точности равна тангенсу угла, который составляет этот луч с осью абсцисс. Аналогичное наблюдение имеет место и для котангенса.
Пример Решите неравенство . Решение. Обозначим , тогда неравенство примет вид простейшего: . Рассмотрим интервал длиной, равной наименьшему положительному периоду (НПП) тангенса. На этом отрезке с помощью линии тангенсов устанавливаем, что . Вспоминаем теперь, что необходимо добавить , поскольку НПП функции . Итак, . Возвращаясь к переменной , получаем, что . Ответ. . Неравенства с обратными тригонометрическими функциями удобно решать с использованием графиков обратных тригонометрических функций. Покажем, как это делается на примере.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|