Решение тригонометрических неравенств графическим методом
Заметим, что если Рассмотрим решение неравенства Поскольку Пусть
На отрезке Аналогично решаются неравенства Пример Решим неравенство
Решение. Рассмотрим график функции
и выберем из промежутка Ответ.
Пример Решите неравенство
Решение. Нарисуем график функции
Это точка с абсциссой
Ответ.
ОТБОР КОРНЕЙ
Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений весьма специфична и обычно оказывается более сложной, чем это имело место для уравнений алгебраических. Приведем решения уравнений, иллюстрирующие типичные случаи появления посторонних корней и методы <<борьбы>> с ними.
Пример Найти ближайший к числу
Решение.
Подставляя последовательно в формулу a) Ясно, что б)
в) г)
Выберем минимальное из чисел
Последнее неравенство --- верное, а все сделанные переходы --- равносильные. Поэтому верно исходное неравенство. Обоснуем равносильность переходов (*) и (**) (равносильность остальных переходов следует из общих свойств числовых неравнств). В случае преобраования (*), достаточно заметить, что числа Ответ.
Пример Найти корни уравнения:
Решение этого уравнения распадается на два этапа: 1) решение уравнения, получающегося из данного возведением в квадрат обеих его частей; 2) отбор тех корней, которые удовлетворяют условию Первый шаг нас приводит к уравнению Теперь надо определить, при каких
Ответ. Итак, основная схема отбора корней состоит в следующем. Находится наименьший общий период всех тригонометрических функций входящих в уравнение. На этом периоде отбираются корни, а затем оставшиеся корни периодически продолжаются.
Пример Решить уравнение:
Решение. Уравнение равносильно смешанной системе:
Но Ответ. Раскрывая знак модуля получаем более громоздное решение. А ответ в этом случае принимает вид: Ответ. ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ
Тест по теме <<Тригонометрические уравнения>>
• Объединение каких множеств
a)
• Решите уравнение a)
• Решите уравнение a) б) в) г)
• Решите уравнение a) б) в) г)
• Решите уравнение a) б) в) г)
• Среди множеств
и укажите те, которые не являются подмножествами друг друга.
а)
• Среди множеств
а)
• Решите уравнение а) в)
• Решите уравнение
а) б) в) г)
• Решите уравнение а) в)
• Сумма корней уравнения а)
• Решите уравнение
В ответе записать количество корней уравнения, принадлежащих отрезку а) • Решить уравнение а) в)
• Решите уравнение a) в)
• Решите уравнение
a) б) в) г)
Найдите набольший отрицательный корень уравнения:
a) в)
• Решите уравнение a) б) в) г)
• Решите уравнение a) в)
• Решить уравнение а)
• Решите уравнение a) б) в) г)
Ответы 1а 2б 3б 4г 5б 6б 7а 8б 9г 10б 11а 12б 13в или г 14а 15в 16в 17в 18а или б 19г 20в ЗАКЛЮЧЕНИЕ
В данной работе были рассмотрены методы решения тригонометрических уравнений и неравенств, как простейших, так и олимпиадного уровня. Были рассмотрены основные методы решения тригонометрических уравнений и неравенств, причем, как специфические --- характерные только для тригонометрических уравнений и неравенств,--- так и общие функциональные методы решения уравнений и неравенств, применительно к тригонометрическим уравнениям.
В дипломной работе приведены основные теоретические сведения: определение и свойства тригонометрических и обратных тригонометрических функций; выражение тригонометрических функций через другие тригонометрических функции, что очень важно для преобразования тригонометрических выражений, в особенности содержащих обратные тригонометрические функции; кроме основных тригонометрических формул, хорошо известных из школьного курса, приведены формулы упрощающие выражения, содержащие обратные тригонометрические функции. Рассмотрены решение элементарных тригонометрических уравнений, метод разложения на множители, методы сведения тригонометрических уравнений к алгебраическим. Ввиду того, что решения тригонометрических уравнений можно записать несколькими способами, и вид этих решений не позволяет сразу установить, являются ли эти решения одинаковыми или различными, рассмотрена общая схема решения тригонометрических уравнений и подробно рассмотрено преобразование групп общих решений тригонометрических уравнений. Подробно рассмотрены методы решения элементарных тригонометрических неравенств, как на единичной окружности, так и графическим методом. Описан процесс решения неэлементарных тригонометрических неравенств через элементарные неравенства и уже хорошо известный школьникам метод интервалов. Приведены решения типичных заданий на отбор корней. Приведены необходимые теоретических сведения для отбора корней: разбиение множества целых чисел на непересекающиеся подмножества, решение уравнений в целых числах (диафантовых). Результаты данной дипломной работы могут быть использованы в качестве учебного материала при подготовке курсовых и дипломных работ, при составлении факультативов для школьников, так же работа может применяться при подготовке учащихся к вступительным экзаменам и централизованному тестированию.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Выгодский Я.Я., Справочник по элементарной математике. /Выгодский Я.Я. --- М.: Наука, 1970. Игудисман О., Математика на устном экзамене/ Игудисман О. --- М.: Айрис пресс, Рольф, 2001. Азаров А.И., уравнения/Азаров А.И., Гладун О.М., Федосенко В.С. --- Мн.: Тривиум, 1994. Литвиненко В.Н., Практикум по элементарной математике / Литвиненко В.Н.--- М.: Просвещение, 1991. Шарыгин И.Ф., Факультативный курс по математике: решение задач/ Шарыгин И.Ф., Голубев В.И. --- М.: Просвещение, 1991. Бардушкин В., Тригонометрические уравнения. Отбор корней/В. Бардушкин, А. Прокофьев.// Математика, №12, 2005 с. 23--27. Василевский А.Б., Задания для внеклассной работы по математике/Василевский А.Б. --- Мн.: Народная асвета. 1988. --- 176с. Сапунов П. И., Преобразование и объединение групп общих решений тригонометрических уравнений/Сапунов П. И. // Математическое просвещение, выпуск №3, 1935. Бородин П., Тригонометрия. Материалы вступительных экзаменов в МГУ[текст]/П.Бородин, В.Галкин, В.Панфёров, И.Сергеев, В.Тарасов // Математика №1, 2005 с. 36--48. Самусенко А.В., Математика: Типичные ошибки абитуриентов: Справочное пособие/Самусенко А.В., Казаченок В.В.--- Мн.: Вышейшая школа, 1991. Азаров А.И., Функциональный и графический методы решения экзаменационных задач/Азаров А.И., Барвенов С.А.,--- Мн.: Аверсэв, 2004.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|