Система массового обслуживания с ожиданием
Система массового обслуживания называется системой с ожиданием, если заявка, заставшая все каналы занятыми, становится в очередь и ждет, пока не освободится какой-нибудь канал. Если время ожидания заявки в очереди ничем не ограничено, то система называется «чистой системой с ожиданием». Если оно ограничено какими-то условиями, то система называется «системой смешанного типа». Это промежуточный случай между чистой системой с отказами и чистой системой с ожиданием. Для практики наибольший интерес представляют именно системы смешанного типа. Ограничения, наложенные на ожидание, могут быть различного типа. Часто бывает, что ограничение накладывается на время ожидания заявки в очереди; считается, что оно ограничено сверху каким-то сроком , который может быть как строго определенным, так и случайным. При этом ограничивается только срок ожидания в очереди, а начатое обслуживание доводится до конца, независимо от того, сколько времени продолжалось ожидание (например, клиент в парикмахерской, сев в кресло, обычно уже не уходит до конца обслуживания). В других задачах естественнее наложить ограничение не на время ожидания в очереди, а на общее время пребывания заявки в системе (например, воздушная цель может пробыть в зоне стрельбы лишь ограниченное время и покидает ее независимо от того, кончился обстрел или нет). Наконец, можно рассмотреть и такую смешанную систему (она ближе всего к типу торговых предприятий, торгующих предметами не первой необходимости), когда заявка становится в очередь только в том случае, если длина очереди не слишком велика. Здесь ограничение накладывается на число заявок в очереди. В системах с ожиданием существенную роль играет так называемая «дисциплина очереди». Ожидающие заявки могут вызываться на обслуживание как в порядке очереди (раньше прибывший раньше и обслуживается), так и в случайном, неорганизованном порядке. Существуют системы массового обслуживания «с преимуществами», где некоторые заявки обслуживаются предпочтительно перед другими («генералы и полковники вне очереди»).
Каждый тип системы с ожиданием имеет свои особенности и свою математическую теорию. Многие из них описаны, например, в книге В. В. Гнеденко «Лекции по теории массового обслуживания». Здесь мы остановимся только на простейшем случае смешанной системы, являющемся естественным обобщением задачи Эрланга для системы с отказами. Для этого случая мы выведем дифференциальные уравнения, аналогичныеуравнениям Эрланга, и формулы для вероятностей состояний в установившемся режиме, аналогичныеформулам Эрланга. Рассмотрим смешанную систему массового обслуживания с каналами при следующих условиях. На вход системы поступает простейший поток заявок с плотностью . Время обслуживания одной заявки - показательное, с параметром . Заявка, заставшая все каналы занятыми, становится в очередь и ожидает обслуживания; время ожидания ограничено некоторым сроком ; если до истечения этого срока заявка не будет принята к обслуживанию, то она покидает очередь и остается необслуженной. Срок ожидания будем считать случайным и распределенным по показательному закону , где параметр - величина, обратная среднему сроку ожидания: ; . Параметр полностью аналогичен параметрам и потока заявок и «потока освобождений». Его можно интерпретировать, как плотность «потока уходов» заявки, стоящей в очереди. Действительно, представим себе заявку, которая только и делает, что становится в очередь и ждет в ней, пока не кончится срок ожидания , после чего уходит и сразу же снова становится в очередь. Тогда «поток уходов» такой заявки из очереди будет иметь плотность .
Очевидно, при система смешанного типа превращается в чистую систему с отказами; при она превращается в чистую систему с ожиданием. Заметим, что при показательном законе распределения срока ожидания пропускная способность системы не зависит от того, обслуживаются ли заявки в порядке очереди или в случайном порядке: для каждой заявки закон распределения оставшегося времени ожидания не зависит от того, сколько времени заявка уже стояла в очереди. Благодаря допущению о пуассоновском характере всех потоков событий, приводящих к изменениям состояний системы, процесс, протекающий в ней, будет марковским. Напишем уравнения для вероятностей состояний системы. Для этого, прежде всего, перечислим эти состояния. Будем их нумеровать не по числу занятых каналов, а по числу связанных с системой заявок. Заявку будем называть «связанной с системой», если она либо находится в состоянии обслуживания, либо ожидает очереди. Возможные состояния системы будут: - ни один канал не занят (очереди нет), - занят ровно один канал (очереди нет), ……… - занято ровно каналов (очереди нет), ……… - заняты все каналов (очереди нет), - заняты все каналов, одна заявка стоит в очереди, ……… - заняты все каналов, заявок стоят в очереди, ……… Число заявок , стоящих в очереди, в наших условиях может быть сколь угодно большим. Таким образом, система имеет бесконечное (хотя и счетное) множество состояний. Соответственно, число описывающих еедифференциальных уравнений тоже будет бесконечным. Очевидно, первые дифференциальных уравнений ничем не будут отличаться от соответствующихуравнений Эрланга: Отличие новых уравнений от уравнений Эрланга начнется при . Действительно, в состояние система с отказами может перейти только из состояния ; что касается системы с ожиданием, то она может перейти в состояние не только из , но и из (все каналы заняты, одна заявка стоит в очереди). Составим дифференциальное уравнение для . Зафиксируем момент и найдем - вероятность того, что система в момент будет в состоянии . Это может осуществиться тремя способами:
1) в момент система уже была в состоянии , а за время не вышла из него (не пришла ни одна заявка и ни один из каналов не освободился); 2) в момент система была в состоянии , а за время перешла в состояние (пришла одна заявка); 3) в момент система была в состоянии (все каналы заняты, одна заявка стоит в очереди), а за время перешла в (либо освободился один канал и стоящая в очереди заявка заняла его, либо стоящая в очереди заявка ушла в связи с окончанием срока). Имеем: , откуда . Вычислим теперь при любом - вероятность того, что в момент все каналов будут заняты и ровно заявок будут стоять в очереди. Это событие снова может осуществиться тремя способами: 1) в момент система уже была в состоянии , а за время это состояние не изменилось (значит, ни одна заявка не пришла, ни один капал не освободился и ни одна из стоящих в очереди заявок не ушла); 2) в момент система была в состоянии , а за время перешла в состояние (т. е. пришла одна заявка); 3) в момент система была в состоянии , а за время перешла в состояние (для этого либо один из каналов должен освободиться, и тогда одна из стоящих в очереди заявок займет его, либо одна из стоящих в очереди заявок должна уйти в связи с окончанием срока). Следовательно: , откуда . Таким образом, мы получили для вероятностей состояний систему бесконечного числадифференциальных уравнений: (19.10.1) Уравнения (19.10.1) являются естественным обобщением уравнений Эрланга на случай системы смешанного типа с ограниченным временем ожидания. Параметры в этих уравнениях могут быть как постоянными, так и переменными. При интегрировании системы (19.10.1) нужно учитывать, что хотя теоретически число возможных состояний системы бесконечно, но на практике вероятности при возрастании становятся пренебрежимо малыми, и соответствующие уравнения могут быть отброшены. Выведем формулы, аналогичные формулам Эрланга, для вероятностей состояний системы при установившемся режиме обслуживания (при ). Из уравнений (19.10.1), полагая все постоянными, а всепроизводные - равными нулю, получим систему алгебраических уравнений:
(19.10.2) К ним нужно присоединить условие: . (19.10.3) Найдем решение системы (19.10.2). Для этого применим тот же прием, которым мы пользовались в случае системы с отказами: разрешим первое уравнение относительно подставим во второе, и т. д. Для любого , как и в случае системы с отказами, получим: . (19.10.4) Перейдем к уравнениям для . Тем же способом получим: , , и вообще при любом . (19.10.5) В обе формулы (19.10.4) и (19.10.5) в качестве сомножителя входит вероятность . Определим ее из условия (19.10.3). Подставляя в него выражения (19.10.4) и (19.10.5) для и , получим: , откуда . (19.10.6) Преобразуем выражения (19.10.4), (19.10.5) и (19.10.6), вводя в них вместо плотностей и «приведенные» плотности: (19.10.7) Параметры и выражают соответственно среднее число заявок и среднее число уходов заявки, стоящей в очереди, приходящиеся на среднее время обслуживания одной заявки. В новых обозначениях формулы (19.10.4), (19.10.5) и (19.10.6) примут вид: ; (19.10.8) ; (19.10.9) . (19.10.10) Подставляя (19.10.10) в (19.10.8) и (19.10.9), получим окончательные выражения для вероятностей состояний системы: ; (19.10.11) . (19.10.12) Зная вероятности всех состояний системы, можно легко определить другие интересующие нас характеристики, в частности, вероятность того, что заявка покинет систему необслуженной. Определим ее из следующих соображений: при установившемся режиме вероятность того, что заявка покинет систему необслуженной, есть не что иное, как отношение среднего числа заявок, уходящих из очереди в единицу времени, к среднему числу заявок, поступающих в единицу времени. Найдем среднее число заявок уходящих из очереди в единицу времени. Для этого сначала вычислим математическое ожидание числа заявок, находящихся в очереди: . (19.10.13) Чтобы получить , нужно умножить на среднюю «плотность уходов» одной заявки и разделить на среднюю плотность заявок , т. е. умножить на коэффициент . Получим: . (19.10.14) Относительная пропускная способность системы характеризуется вероятностью того, что заявка, попавшая в систему, будет обслужена: . Очевидно, что пропускная способность системы с ожиданием, при тех же и , будет всегда выше, чем пропускная способность системы с отказами: в случае наличия ожидания необслуженными уходят не все заявки, заставшие каналов занятыми, а только некоторые. Пропускная способность увеличивается при увеличении среднего времени ожидания . Непосредственное пользование формулами (19.10.11), (19.10.12) и (19.10.14) несколько затруднено тем, что в них входят бесконечные суммы. Однако члены этих сумм быстро убывают. Посмотрим, во что превратятся формулы (19.10.11) и (19.10.12) при и . Очевидно, что при система с ожиданием должна превратиться в систему с отказами (заявка мгновенно уходит из очереди). Действительно, при формулы (19.10.12) дадут нули, а формулы (19.10.11) превратятся в формулы Эрлангадля системы с отказами.
Рассмотрим другой крайний случай: чистую систему с ожиданием . В такой системе заявки вообще не уходят из очереди, и поэтому : каждая заявка рано или поздно дождется обслуживания. Зато в чистой системе с ожиданием не всегда имеется предельный стационарный режим при . Можно доказать, что такой режим существует только при , т. е. когда среднее число заявок, приходящееся на время обслуживания одной заявки, не выходит за пределы возможностей -канальной системы. Если же , число заявок, стоящих в очереди, будет с течением времени неограниченно возрастать. Предположим, что , и найдем предельные вероятности для чистой системы с ожиданием. Для этого положим в формулах (19.9.10), (19.9.11) и (19.9.12) . Получим: , или, суммируя прогрессию (что возможно только при ), . (19.10.15) Отсюда, пользуясь формулами (19.10.8) и (19.10.9), найдем , (19.10.16) и аналогично для . (19.10.17) Среднее число заявок, находящихся в очереди, определяется из формулы (19.10.13) при : . (19.10.18) Пример 1. На вход трехканальной системы с неограниченным временем ожидания поступает простейший потокзаявок с плотностью (заявки в час). Среднее время обслуживания одной заявки мин. Определить, существует ли установившийся режим обслуживания; если да, то найти вероятности , вероятностьналичия очереди и среднюю длину очереди . Решение. Имеем ; . Так как , установившийся режим существует. По формуле (19.10.16) находим ; ; ; . Вероятность наличия очереди: . Средняя длина очереди по формуле (19.10.18) будет (заявки).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|