Может ли наиболее вероятное число успехов в схеме Бернулли отличаться от математического ожидания числа успехов на 2? Ответ обоснуйте.
По схеме Бернулли наиболее вероятное число успехов: k=np+p. Мат. ожидания: так как схему Бернулли можно представить как биноминальное распределение M(x)=np np+p-np=p Следовательно, в схеме Бернулли наиболее вероятное число успехов может отличаться от мат. ожидания на число р - вероятность успеха и известно, что p+q=1, p=1-q p<1. А значит отличаться на 2 не может. 35. Запишите локальную приближенную формулу Лапласа, приведите основные свойства функции Гаусса ϕ (x) и укажите ее график. При каких условиях данная формула дает хорошее приближение? Какие условия применимости отличают эту формулу от приближенной формулы Пуассона? Если число опытов достаточно велико но не бесконечно, а вероятность появления события А в каждом опыте не стремится к 0, применяют локальную и интегральную теоремы Лапласа Локальная теорема Лапласа. Вероятность того, что в n независимых испытаниях в каждом из которых вероятность появления события А равно р причем 1>р>0, то это событие наступает ровно m раз приблизительно равна
36. Запишите интегральную приближенную формулу Лапласа и приведите основные свойства функции Лапласа Φ(x). При каких условиях данная формула дает хорошее приближение? Интегральная теорема Лапласа. Вероятность того, что в n независимых испытаниях в каждом из которых вероятность появления события А равно р, причем 1>р>0, то событие А наступит не менее m1 раз и не более m2 раза приблизительно равно Эта формула дает хорошее приближение при больших n 37. Укажите выражение для функции Лапласа Ф(x). Докажите нечётность функции Ф(x) и нарисуйте график y=Ф(x). Чему равно Ф(12)? Функция: Ф(x) = Доказ-во Ф(-x) = -Ф(x): запишем выражение Ф(-x) =
График: симметричен относительно начала координат, проходит через (0;0). Горизонтальные асимптоты: -0,5 и 0,5. Ф(12) = 0,5.
Используя интегральную приближённую формулу Лапласа, выведите формулу для оценки отклонения относительной частоты события А от вероятности p наступления A в одном опыте. В условиях схемы Бернулли с заданными значениями n и p для данного e>0 оценим вероятность события
Сформулируйте и докажите предельную теорему Пуассона. При n®¥, p®0 b, а величина l = np остаётся постоянной Док-во: имеем:
Запишите приближённые формулы Пуассона. При каких условиях они дают хорошее приближение? Приведите примеры их применения. формулы Пуассона:
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|