Занятие 5. Показатели вариации
Для измерения вариации в статистике применяют несколько способов. Наиболее простым является расчет показателя размаха вариации Н как разницы между максимальным (Xmax) и минимальным (Xmin) наблюдаемыми значениями признака: R=Xmax - Xmin. Однако размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается. Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение Л как среднее арифметическое значение абсолютных отклонений признака от его среднего уровня: Рассмотрим пример расчета: Сначала определим среднее значение:
Используем функцию АВТОЗАПОЛНЕНИЕ:
и автосумма: Осталось поделить на количество элементов в ряду:
Получили среднее линейное отклонение 1,125. При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной: (Напомним, что алгебраическая сумма отклонений от среднего уровня равна нулю.) Рассмотрим тот же пример, но сгруппированные данные: Значение среднего линейного отклонения также равно 1,125. В случае расчета по интервальной группировке используются середины интервалов, и расчет по сгруппированным и несгруппированным данным будет давать некоторое расхождение в результатах. Показатель среднего линейного отклонения нашел широкое применение на практике. С его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования. Но, к сожалению, этот показатель усложняет расчеты вероятностного типа, затрудняет применение методов математической статистики. Поэтому в статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии.
Дисперсия признака (s2) определяется на основе квадратической степенной средней: . Показатель s, равный , называется средним квадратическим отклонением. В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов. Если вариация оценивается по небольшому числу наблюдений, взятых из неограниченной генеральной совокупности, то и среднее значение признака определяется с некоторой погрешностью. Расчетная величина дисперсии оказывается смещенной в сторону уменьшения. Для получения несмещенной оценки выборочную дисперсию, полученную по приведенным ранее формулам, надо умножить на величину n / (n - 1). В итоге при малом числе наблюдений (< 30) дисперсию признака рекомендуется вычислять по формуле . Обычно уже при n > (15÷20) расхождение смещенной и несмещенной оценок становится несущественным. По этой же причине обычно не учитывают смещенность и в формуле сложения дисперсий. Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсию среднего значения можно и на основе всего одного выборочного наблюдения по формуле , где n – объем выборки; s2 – дисперсия признака, рассчитанная по данным выборки. Величина носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.
Вышеперечисленные показатели (кроме среднего линейного отклонения) можно определить по несгруппированным данным с помощью приложения «Описательная статистика» (см. выше). Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%. 1. Коэффициентом осцилляции отражают относительную колеблемость крайних значений признака вокруг средней . 2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины . 3. Коэффициент вариации: является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин. В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.
Решить задачи: Задача 5.1. В таблице ниже указано количество баллов, набранных студентами группы по дисциплине «Статистика» на контрольной работе к 1-ой текущей аттестации: 18, 16, 19, 17, 18, 20, 15, 13, 5, 15, 16, 8, 9, 20, 4, 11, 12, 18, 15, 9, 13, 4, 5. Рассчитать показатели вариации. При выполнении данного задания воспользоваться программным пакетом «Microsoft Excel». Задача 4.2. Рассчитать показатели вариации по следующим исходным данным:
При выполнении данного задания воспользоваться программным пакетом «Microsoft Excel». Задача 4.3. Рассчитать показатели вариации по следующим исходным данным:
При выполнении данного задания воспользоваться программным пакетом «Microsoft Excel». Задача 4.4. Рассчитать показатели вариации по следующим исходным данным:
При выполнении данного задания воспользоваться программным пакетом «Microsoft Excel».
Читайте также: A) Основные микроэкономические показатели. Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|