Общее электрическое сопротивления зоны сварки
Многочисленными исследованиями процесса КТС к настоящему времени однозначно установлены зависимости электрического сопротивления участка электрод–электрод r ЭЭ от основных факторов, воздействующих на него при точечной сварке. В общем случае величина r ЭЭ и ее изменение при КТС зависят от параметров режима сварки, толщины деталей и свойств их металла, формы и размеров рабочих поверхностей электродов. Наибольшее влияние на исходную величину электрического сопротивления участка электрод–электрод r ЭЭ оказывают свойства материала деталей, состояние их поверхностей и время t В выдержки деталей от момента зачистки до сварки, усилие сжатия электродов F Э, форма и размеры их рабочих поверхностей (d Э или R Э). С увеличением усилия сжатия электродов F Э исходное электрическое сопротивление участка электрод–электрод всегда уменьшается С увеличением времени выдержки деталей от момента зачистки до сварки t В увеличивается как величина r ЭЭ, так и разброс его значений. То есть в этом случае, наоборот, стабильность электрического сопротивления участка электрод–электрод уменьшается. Причем наиболее интенсивно рост величины r ЭЭ и разброса его значений идет в первые двое – трое суток. Это обусловлено увеличением контактных сопротивлений из-за окисления свариваемых деталей, то есть ростом толщины окисных пленок на их поверхностях. Именно поэтому в практике КТС проведение технологических мероприятий (подготовки поверхностей деталей перед сваркой), направленных на уменьшение величины контактных сопротивлений и повышение стабильности их значений, является исходным условием получения качественных сварных соединений. Последнее обстоятельство особенно существенно для технологии сварки деталей из алюминиевых и магниевых сплавов [3, 9, 10, 14, 114].
При увеличении диаметра d Э (при плоской) или радиуса R Э (при сферической) рабочих поверхностей электродов величина r ЭЭ несколько уменьшается. Это обусловлено увеличением площади токопроводящего сечения в свариваемых деталях. Разброс же значений r ЭЭ при этом увеличивается, то есть стабильность их уменьшается. Это является следствием уменьшения давления в контактах, которое происходит из-за увеличения их площади при неизменном усилии сжатия электродов. Однако влияние этого фактора на процесс КТС не столь существенно, как двух описанных выше. Геометрические параметры электродов (d Э, d Э или R Э) обычно выбирают по технологическим рекомендациям в зависимости от толщины свариваемых деталей (см. табл. 1.2) [3, 9, 11, 15]. При КТС в процессе формирования точечного сварного соединения величина электрического сопротивления участка электрод–электрод r ЭЭ всегда уменьшается (рис. 2.22). В динамике уменьшения r ЭЭ выделяют два этапа: I и II, которые существенно различаются градиентом скорости изменения электрического сопротивления участка электрод–электрод. В течение этапа II величина сопротивления r ЭЭ в основном определяется величиной сопротивления деталей 2 r Д, так как сопротивление контактов электрод–деталь 2 r ЭД невелико, а сопротивление контакта деталь–деталь r ДД к этому времени уменьшается практически до нуля. В этот период характер изменения r ЭЭ определяется в основном двумя процессами: увеличением сопротивления зоны сварки из-за его нагрева и уменьшением ее сопротивления вследствие увеличения площадей контактов. Небольшой спад r ЭЭ на этом участке обусловлен преимущественным влиянием увеличения площади электрических контактов, диаметры которых к концу нагрева достигают значений d Э и d П [3, 4, 7…17, 107, 155, 156].
В общем случае характер изменения r ЭЭ в процессе сварки зависит от свойств металла, толщины деталей, режима сварки, формы импульса тока, размеров ядра, формы рабочей поверхности электродов и т. п. Естественно, что величина общего сопротивления участка электрод-электрод r ЭЭ меньше для сплавов с более низким удельным электросопротивлением (сплавы на основе меди и алюминия (рис. 2.23)). Это обусловлено также и тем, что для всех толщин деталей, независимо от материалов из которых они изготовлены, отношения геометрических параметров рабочих поверхностей электродов и диаметров ядра к толщине деталей примерно одинаковые (см. п. 1.3.4, табл. 1.1 и 1.2). С увеличением толщины деталей общее сопротивление участка электрод–электрод и конечное его значение r ЭЭК заметно снижаются в основном за счет увеличения площади контакта в процессе сварки (см. табл. 2.4). Увеличение диаметра ядра при , которое достигается повышением силы тока или времени сварки приводит, как правило, к снижению r ЭЭ и r ЭЭК. Изменение параметров режима точечной сварки оказывает заметное влияние на r ЭЭ вследствие изменения теплового состояния металла и площади контактов. Так, увеличение FCB или I СВ приводит к росту диаметра контактов и снижению r ЭЭ. Переход к режимам с большим временем сварки при сохранении одного и того же диаметра ядра также приводит к некоторому снижению r ЭЭ и r ЭЭ К из-за уменьшения сопротивления пластической деформации и роста размеров контактов. При точечной сварке используются электроды со сферической и плоской рабочей поверхностью. Сварка электродами со сферической рабочей поверхностью отличается меньшими размерами контакта на первом этапе, соответственно большей плотностью тока и большей скоростью тепловыделения. Зона расплавления возникает раньше, чем при сварке электродами с плоской рабочей поверхностью, и поэтому область I на рис. 2.22менее протяженна и значения r ЭЭ в этой области заметно выше. При этом скорость повышения r ЭЭ возрастает с уменьшением радиуса сферы. Характер изменения r ЭЭ области II для обоих типов электродов примерно одинаков, но в течение всего цикла сварки среднее значение r ЭЭ при сварке электродами со сферической рабочей поверхностью на 10…15 % выше, чем при сварке электродами с плоскими рабочими поверхностями.
Таблица 2.4 Значения r ЭЭ К в конце процесса КТС
Таким образом, основным фактором, дестабилизирующим электрическое сопротивление зоны сварки (участка электрод–электрод) и, в конечном итоге, параметры качества получаемых соединений, является в основном электрическое сопротивление контактов. Поэтому при приближённых технологических расчётах, например, сварочного тока по зависимости (1.11), сопротивление зоны сварки r ЭЭ обычно принимают равным его значению в конце процесса КТС r ЭЭК. [3] Для упрощения расчета r ЭЭ = 2 r Д (при сварке двух деталей одинаковой толщины) используют условную схему термодеформационного состояния металла зоны сварки. В частности, учитывая, что в контакте электрод–деталь его диаметр dK ЭД примерно равен диаметру рабочей поверхности электрода d Э (dK ЭД ≈ d Э) (см. табл. 1.1), а диаметр контакта деталь–деталь dK ДД приближённо равен диаметру уплотняющего пояска d П (dK ДД ≈ d П) и то, что d Э мало отличается от d П, условно принимают d П ≈ d Э (где d П ≤ 1,2 d Я). Кроме того, принимают также, что сопротивления контактов r ЭД и r ДД равны нулю.
При таких допущениях определяемое сопротивление r ЭЭ представляют как сумму сопротивлений двух условных пластин одинаковой толщины s, каждая из которых нагрета до некоторой средней температуры Т1 и Т2 (рис. 2.24). Тогда искомое сопротивление r ЭЭК определяется следующей зависимостью [3]: . (2.18) Удельные электросопротивления деталей ρ1 и ρ2 (см. рис. 2.23) определяют соответственно по температурам Т1 и Т2 для полулистов, прилегающих к электродам и контакту деталь–деталь соответственно (рис. 2.24). В частности, при сварке деталей из низкоуглеродистых сталей Т1 и Т2 принимают соответственно равными 1200 и 1500 °С, а для алюминиевых сплавов — 450 и 630 °С. Коэффициент kP, учитывающий неравномерность нагрева деталей, для сталей принимают равным ~ 0,85, для алюминиевых и магниевых сплавов — ~ 0,9. При сварке деталей толщиной 0,8…3 мм коэффициент А. С. Гельмана АГ (см. рис. 2.20) принимают равным ~ 0,8 [3]. Значения сопротивлений, рассчитанные по зависимости (2.18), как правило, согласуются с экспериментальными данными, в частности, приведенными в табл. 2.4. Таким образом, электрическая проводимость зоны сварки, определяемая электрическим сопротивлением свариваемых деталей и контактов электрод–деталь и деталь–деталь, зависит от большого числа технологических факторов точечной сварки и отличается значительной нестабильностью, в первую очередь, из-за нестабильности электрических сопротивлений контактов электрод–деталь и деталь–деталь. Поэтому при приближенных решениях технологических задач КТС проводимость зоны сварки оценивают по электрическому сопротивлению только свариваемых деталей.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|