Метод кумулятивного построения ставки дисконта 2 глава
Первым делом необходимо выяснить назначение установки. В нашем случае назначением является подземное хранение бензина и использование его для заправки автотранспорта. Теперь следует составить карточку, в которой будут указаны возможные отклонения параметров, возможные причины таких отклонений, последствия и необходимые меры безопасности, а также ключевое слово, которое должно предупредить об отклонениях от проектного режима работы системы. Прежде чем говорить о ключевом слове, группа исследователей должна решить, какие особенности системы она собирается исследовать. В нашем примере необходимо определить, что именно представляет здесь интерес: поток топлива через систему, давление или какие-либо другие ее характеристики. Большинство установок и систем в процессе работы характеризуется различными параметрами. Такими параметрами могут быть поток, объем, температура, давление и другие, отклонение значений которых от нормы может привести к аварии или к невыполнению установкой своего назначения, а следовательно, к убыткам. Все важные для анализа характеристики системы должны быть приняты во внимание. В рассматриваемом случае основная характеристика, которую необходимо исследовать, это поток бензина из емкости в автомобиль. Второй этап — выявление отклонений. Итак, в нашем случае назначение системы — создание потока бензина. Теперь следует выбрать ключевые слова. Примеры таких слов представлены в табл. 5.1. Ключевые слова, перечисленные в табл. 5.1, предназначены для того, чтобы подсказать пользователю системы различные возможные ситуации, с которыми он может столкнуться в процессе ее эксплуатации.
Третий этап — анализ причин и последствий. После того как назначение системы определено, следует установить все, что может произойти с ней неприятного. Каждая возможная причина должна быть пронумерована, и под этим номером должны быть указаны возможные последствия и меры, которые необходимо принять. Этот метод подходит как для действующего предприятия, так и для стадии проектирования любой системы или процесса. Группа проектировщиков вместе с риск-менеджером может подробно исследовать все варианты еще до того, как начнется изготовление установки.
Очень важно быть уверенным, что ничего не пропущено. Если система сложная, т.е. состоит из множества компонентов, например, клапанов, баков, трубопроводов и т.д., то очень трудно что- либо не пропустить. Чтобы избежать этого, полезно вести специальную контрольную карточку потоков, которая будет служить руководством и проводником в процессе исследований. Образец такой карточки показан в табл. 5.2. В этой карточке просто отмечаются различные этапы исследования, и использование ее позволяет уменьшить возможность пропустить какую-нибудь секцию установки или процесса. После того как весь процесс анализа завершен, на карточке делается пометка, что все секции и части системы проверены. Полезно завести специальный дневник, в котором будет отмечаться выполнение мер по предотвращению нежелательных событий и поломок.
Общая схема последовательности этапов исследования риска при помощи СП-метода представлена на рис. 5.4. Преимущества рассматриваемого метода можно кратко сформулировать в виде следующих выводов. 1. Возможные риски выявляются очень детально. Маловероятно, что при таком подходе можно что-либо существенное упустить, при условии, что исследование выполняется компетентными специалистами. Метод позволяет также подробно проанализировать отдельные части или секции сложной системы, что едва ли можно достичь без ее предварительного структурирования.
Главный недостаток метода заключается в значительных затратах времени на проведение полного комплекса исследований Причем это не только затраты времени риск-менеджера, но и тех специалистов, которые привлекаются к работе. В результате подобные исследования обходятся довольно дорого. Второй недостаток связан с методологией анализа. Для того чтобы нарисовать схему установки, часто ее необходимо упростить. Но при этом упускаются некоторые детали, так что всегда существует опасность исключить из рассмотрения некоторые аспекты риска. 5.1.3. Метод деревьев отказов
Следующий метод анализа риска, который мы рассмотрим, носит название дерева отказов. Это графическое представление всей цепочки событий, последствия которых могут привести к некоторому главному событию. Иначе говоря, определяются пути, по которым отдельные индивидуальные события могут в результате их комбинированного воздействия привести к потенциально опасным ситуациям. В последние десятилетия этот метод получил широкое распространение во многих отраслях промышленности во всем мире. Применяется он также и для анализа предпринимательских и инвестиционных рисков. Как уже упоминалось, алгоритм исследования при использовании деревьев отказов обратен таковому при использовании метода деревьев событий. Рассмотрим для примера процесс, типичный для химического производства. Пусть на предприятии имеется автоматическая установка синтеза химических веществ (ее общая схема показана на рис. 5.5). Сырьевые материалы поступают в бункер, изображенный в верхней части схемы, где частично перерабатываются, т.е. может производиться их растворение, сжижение, испарение или переход в другие фазовые состояния. Из бункера они поступают по ленточному транспортеру в следующую установку (сборник) и подвергаются следующей стадии переработки. Затем сырье засасывается в бак, где к нему добавляются химические присадки. Бак оборудован предохранительным клапаном давления. После завершения процесса вся смесь поступает через выпускную трубу на следующую стадию процесса.
В бак с одного конца всасывается сырье, с другой его стороны подаются химикалии, а затем смесь выкачивается насосом. Хотя бак оборудован предохранительным клапаном давления, но все же можно представить себе ситуацию, при которой может случиться взрыв. В простейшем случае это может произойти, если увеличится давление смеси в баке, а предохранительный клапан не сработает.
Рис.5.5. Пример использования метода дерева отказов (система синтеза химических веществ) Рассмотрим такой вариант, как простое дерево отказов. Событие взрыва — это вершина дерева, а два события, которые могут привести к взрыву, это ветви дерева. Эти события связаны с вершиной дерева «калиткой» — условием «н», поскольку, чтобы взрыв произошел, должны одновременно произойти оба эти события. Часто бывает так, что одно или другое из нескольких событий может вызвать следующее по цепочке событие, поэтому кроме условия «и» должно использоваться и условие «или». Например, в баке может повыситься давление, если или отказывает насос (и частицы резины не отсасываются из бака), или бак чрезмерно загружен сырьевыми материалами. Каждое из этих событий может привести к повышению давления в баке. Дерево отказов строится следующим образом: • Рассматриваемое главное событие изображается на.вершине. • При построении дерева логическая схема отталкивается от главного события. Исходная точка — это не причины, приведшие к событию, а оно само. И только задав событие, можно начинать исследование возможных причин его появления. • Ветви дерева представляют собой все пути, по которым событие может реализоваться, а связь между исходными событиями и главным событием осуществляется через «калитку», или условие. • В качестве таких «калиток» могут использоваться либо «м», либо «млн», других возможностей не существует. «Калитки» представляют собой логические условия, которые выбираются исходя из «здравого смысла» работы системы. Введем вероятности для отдельных ветвей системы. На рис. 5.6 указаны вероятности увеличения давления и отказа насоса. Обычно вероятность события задается за период, равный году, и здесь указана вероятность повышения давления 2 раза в год. Это результат усреднения наблюдений за работой насосов такого типа в течение многих лет. Однако взрыв не будет иметь место при каждом повышении давления, поскольку предохранительный клапан, если он исправен, сбросит излишнее давление. Взрыв произойдет только в том случае, когда предохранительный клапан не сработает и давление повысится. Это обстоятельство указано на схеме дерева отказов условием «и». Пусть вероятность отказа клапана оценивается значением 1 х 104/год.
Два события — повышение давления и отказ предохранительного клапана — соединены условием «и», поскольку они должны произойти одновременно, чтобы вызвать взрыв. Риск того, что оба они произойдут одновременно, равен произведению вероятностей этих двух исходных событий. События, связанные условием «и», перемножаются, а события, связанные условием «или», складываются. Результат перемножения дает вероятность, что повышение давления и отказ предохранительного клапана произойдут одновременно. Этот результат показан на рис. 5.6, где указано, что вероятность взрыва составляет 0,0002/год. Далее необходимо решить, приемлем ли для системы такой риск или нет. В построенном дереве отказов используется также связь «или» с указанием значений вероятностей. Из рис. 5.6 следует, что насос выходит из строя в среднем раз в два года, или 0,5/год. Чрезмерная загрузка бака может произойти в среднем раз каждые восемь месяцев, т.е. 1,5/год. Давление повысится, если или насос выйдет из строя, или загрузка бака будет чрезмерной, поэтому связь между исходными событиями определяется условием «или». Поэтому, как уже было сказано, вероятность промежуточного события — повышения давления — определяется сложением вероятностей двух исходных событий, т.е. она равна 2/год.
Итак, на рисунке показано главное событие — взрыв бака, которое поставлено на вершину дерева. Оно может случиться, если произойдут одновременно оба предыдущих события: повышение давления и отказ предохранительного клапана. Давление повысится, если или насос выйдет из строя, или загрузка в баке окажется чрезмерной. Вероятности этих событий отражены на рисунке, где указано также, что главное событие может произойти с вероятностью 0,0002/год. Метод деревьев отказов применяется во многих отраслях промышленности и имеет большое практическое значение. Дерево отказов может быть также использовано для анализа чувствительности отдельных событий к отклонениям параметров системы или для выявления тех частей системы, которые вносят наибольший вклад в суммарный рнск наступления неблагоприятных событий. Например, замена предохранительного клапана, вероятность отказа которого составляет 10"4, на модернизированный клапан, у которого вероятность отказов 1 х 10'5, приведет к тому, что риск взрыва бака снизится с 2 х 10"4 до 2 х 10"5. Таким образом, модернизация клапана позволяет снизить главный риск рассматриваемой системы, т.е. риск взрыва бака. В рассматриваемом примере снизить риск можно также путем уменьшения вероятности повышения давления, например заменить насос другим, более надежным, с более низкой вероятностью поломки. Пусть у нового насоса вероятность выхода из строя равна 0,25/год, т.е. в 2 раза ниже, чем у первого насоса. Если установить такой насос, то давление может увеличиться с частотой в среднем 1,75 раз в год (0,25/год + 1,5/год). Тогда риск взрыва бака составит: (1,75/год)(1 х 10-4) = 0,000175/год. По сравнению с предыдущим вариантом снижение риска не очень существенно. Конечно, здесь следует отметить, что частота поломок насоса снижена только в 2 раза, в то время как частота отказов клапана снижена в 10 раз. Чтобы сделать сравнение более корректным, можно оценить, насколько уменьшится риск, если снижение вероятности выхода из строя насоса и клапана будет одинаковым, например в 2 раза. Пусть риск отказа клапана составит 0,5 х 10-4 вместо 1 х 10-4. Тогда риск взрыва составит: (2/год)(0,5 х 10-4) = 0,0001/год, или раз в 10 000 лет. Это значение можно теперь сравнить с результатом, который мы получили для снижения риска поломки насоса в два раза. В первом случае снижение менее существенно. Данный пример показывает, что одинаковые снижения риска различных исходных событий могут давать неодинаковое снижение риска главного события и что дерево отказов обеспечивает механизм анализа чувствительности безопасности системы к изменениям значений различных параметров. Наконец, дерево отказов позволяет выявить все пути, которые приводят к главному событию, и, что наиболее важно, дает возможность определить минимальное число комбинаций событий, которые могут вызвать главное событие. Производственные процессы или технические системы могут иметь несколько различных технологических цепочек, и все они должны быть отражены на графе дерева отказов. Главное событие может индуцироваться большим числом исходных событий, некоторые из которых могут перекрываться или дублироваться в различных частях процесса. Все такие элементы должны быть отражены в дереве отказов. Если мы сможем выделить минимальное число цепочек событий, которые приведут к главному событию, то можно будет определить те ключевые части системы или процессы, модернизация которых может быть наиболее эффективной с точки зрения безопасности. Минимальное число цепочек событий, при которых может произойти главное событие, называется «набор минимальных кратчайших путей» (set of minimum cut sets), а кратчайший путь (cut set) — это группа событий, или первичных источников отказов, которые могут привести к главному событию через минимальное число шагов. Покажем на примере, как можно определить такие кратчайшие пути, т.е. минимальное число последовательностей событий, при которых бак может взорваться, рассматривая все первичные события на языке алгебры логики. Так, на рис. 5.6 отдельные события процесса обозначены латинскими буквами от А до М. Главное событие М возникает, если одновременно происходит событие А и В, следовательно: М = АВ. Но событие А происходит, если происходит или событие С, или событие D: А = C+D. Тогда М = (C+D)B = СВ + DB. Подставим в это выражение соответствующие частоты и вероятности: М = (0,5/год) × (104 × 1) + (1,5/год)(1 × 10-4) = 0,00005/год + +0,00015/год = 0,0002/год. Минимальное число шагов последовательности событий, при которых может произойти взрыв, здесь равно двум: С и В или D и В. Это означает, что взрыв произойдет в том случае, если или испортится насос и при этом откажет предохранительный клапан, или в баке окажется чрезмерная загрузка материалами и при этом откажет клапан. Далее можно сделать заключение, что событие DB наиболее вероятно из двух цепочек событий, а наиболее эффективный способ снижения риска взрыва бака — это снижение вероятности чрезмерной загрузки сырьевыми материалами и повышение надежности предохранительного клапана. На рис. 5.7 изображено полное дерево отказов для рассмотренного примера. Здесь более детально показаны все возможные исходные события, поэтому можно понять, как исходные события могут привести к главному событию — взрыву бака. На графе добавлены цепочки, которые могут привести к нарушению нормальной работы насоса. Например, скорость вращения насоса может увеличиться, а регулятор оборотов при этом окажется неисправным, и индикатор покажет неправильное число оборотов насоса. Если бы указатель оборотов был исправен, оператор мог бы выключить насос или предпринять какие-либо другие шаги, чтобы предотвратить выход из строя системы.
Из рисунка также следует, что чрезмерная загрузка бака сырьем может быть следствием или увеличенной подачи материалов транспортером, или некоторой (не конкретизированной) ошибки оператора. Ошибка оператора может также стать причиной отказа предохранительного клапана; другой причиной отказа клапана может быть попадание в него грязи или посторонних предметов. Исходные первичные события на рис. 5.7 изображены в кружках, чтобы выделить их по отношению к другим, являющимся вторичными. Конечно, и указанные в кружках исходные события могут иметь свои причины, но где-то нужно остановиться. И мы считаем, что в данной системе эти исходные события действительно являются первопричиной. Рассмотрим алгоритм вычисления минимального кратчайшего пути для полного дерева отказов. С его помощью можно найти кратчайший путь к главному событию, просматривая все возможные цепочки событий. Первый шаг — составление таблицы возможных путей (табл. 5.3).
Из табл. 5.3 видно, что сначала выбирается определенное условие — «калитка», далее исследуется число входов в нее, а затем число ветвей дерева, входящих в «калитку». Если при этом соответствующий вход также является «калиткой», то в таблицу вписывается его номер, а для конечных ветвей дерева вписывается буква, обозначающая соответствующий исходный процесс. Например, «калитке» 1 соответствует условие «и» с двумя входами 2 и 3, «калитке» 3 — условие «или» с входами Е и F. После составления такой таблицы следует заполнить серию матриц следующим образом: «Калитка» 1 показана в верхнем левом углу первой матрицы. Во второй матрице она заменяется ее входами, а именно: 2 и 3. Номера входов записываются слева направо по горизонтали, поскольку «калитка» 1 — это условие «м». В третьей матрице «калитка» 2 заменяется ее входами 4 и 5, а номера входов ставятся сверху вниз, поскольку «калитка» 2 — это условие «или». Отметим также, что каждый из входов 4 и 5 в матрице связан со входом 3, поскольку вход 2 связан со входом 3 условием «и». Этот процесс продолжается, и в пятой матрице заканчивается минимальным числом независимых путей (в данном случае их шесть), по которым может произойти главное событие. Преимущества метода деревьев отказов — это отличная возможность описать сложные процессы или системы, отобразить и проанализировать структуру системы с учетом всех промежуточных звеньев. Составление дерева отказов ценно уже тем,что помогает лучше и глубже разобраться в работе системы. Дерево отказов позволяет идентифицировать (т.е. выявить) риски, присущие системе, и количественно их описать. В рассмотренном примере необходимо проследить все события, которые могут привести к взрыву бака. После того как такие события идентифицированы, они должны быть проанализированы с точки зрения причин, которые эти события вызывают. К недостаткам следует отнести большие затраты времени как на составление диаграммы дерева отказов, так и на изучение соответствующей техники. Эти недостатки характерны для многих методов выявления и оценки риска. Одна из главных особенностей метода деревьев отказов — это оценка вероятностей событий. Если вероятности исходных и промежуточных событий оценены неправильно или неточно, то все последующие вычисления для оценки вероятности главного события окажутся недостоверными. Перечислим основные пути повышения достоверности оценки вероятностей исходных событий. Прежде всего, может существовать прошлый опыт работы соответствующей установки или какой-либо подобной ей на данном предприятии, и, следовательно, существует статистика отказов отдельных элементов. Большинство фирм ведет регистрацию подобных событий и имеет данные за довольно продолжительное время, которые часто используются как хорошая мера вероятностей. Если на предприятии такая база данных отсутствует, то есть возможность использовать данные об отказах аналогичного оборудования во всей отрасли промышленности. Такая статистика обычно ведется специальными группами или организациями и публикуется в специализированных изданиях. Соответствующую статистику ведут также производители оборудования и предоставляют ее потребителям, чтобы обеспечить доверие к своей продукции. Наконец, можно получить некоторую субъективную информацию о вероятностях отказов того или иного оборудования или устройства от собственных работников компании. Методы получения и обработки подобной информации хорошо развиты. Можно также предложить соответствующим специалистам свою собственную оценку вероятностей тех или иных отказов оборудования и попросить их подкорректировать эти данные. Такую процедуру можно и нужно делать неоднократно, пока не будет уверенности в достаточной достоверности данных.
5.1.4. Методы индексов опасности
Методы индексов опасности пригодны при оценке потенциальной опасности, существующей на промышленном предприятии, если требуется оценить риск интегрально, не вдаваясь в детали производственных процессов. Основная идея — оценить некоторым числовым значением (индексом) степень опасности рассматриваемой системы. Существуют различные способы, как это может быть сделано, но наиболее часто при оценке пожаро- и взрывобезопасности используется метод индекса Дау (Dow Fire and Explosion Index). При вычислении индекса Дау отдельным техническим характеристикам ставят в соответствие определенные показатели, численно характеризующие потенциальную опасность конкретных элементов процесса или технической системы. Затем показатели суммируют, не вдаваясь в особенности функционирования рассматриваемой системы. Индекс Дау формируется как произведение двух интегральных показателей: узлового показателя опасности (F) и материального фактора (М), т.е.: Дау = F • М. (5.1) Материальный фактор (М) — это количественная мера интенсивности выделения энергии из определенных химических веществ или материалов, которые могут находиться или находятся в составе выбранной единицы оборудования или части процесса. Для его определения составляется перечень всех потенциально опасных химических веществ и материалов, используемых в системе. Каждому из таких веществ ставится в соответствие определенное число, характеризующее его опасность. Шкала таких чисел для химически опасных веществ обычно разрабатывается специальными международными или национальными агентствами и приводится в нормативных документах. Общий материальный фактор системы определяется как сумма материальных факторов всех потенциально опасных веществ, используемых в рассмотренном процессе, с весами, соответствующими их количеству: (5.2) где i — номер рассматриваемого опасного вещества; ν1, — относительное количество вещества в системе (масса или объем); ; N1, — индекс опасности вещества по специальной шкале. Значение материального фактора обычно находится в пределах между I и 40. Узловой показатель опасности вычисляется по формуле: F=f1* f2 (5.3) гдеf1— показатель общих опасностей; f2— показатель специфических опасностей. Показатель общих опасностей характеризует факторы процесса, способные увеличить размер убытков при наступлении неблагоприятною события. В их число входят: обращение с материалами и их перемещение, тип реакций в процессе, дренажи и т.д. По каждой из таких характеристик установлена числовая шкала, из которых выбирается значение, соответствующее степени потенциальной опасности. Показатель f1 вычисляется как сумма выбранных таких образом численных значений для каждой из позиций. Показатель специфических опасностей характеризует факторы, которые увеличивают вероятность возникновения пожара или взрыва. Они включают в себя температуру, пыль, давление, количество воспламеняемых материалов, нагревательные устройства. Каждая из таких позиций также характеризуется определенными численными значениями, а сумма этих значений дает величину f2. Значение показателей f1 иf2позволяет рассчитать узловой фактор. Значение индекса Дау, как уже было сказано, определяется произведением узлового и материального факторов.
Грубая качественная оценка последствий пожара или взрыва может быть охарактеризована значениями индекса Дау по шкале, представленной в табл. 5.4.
Однако сам по себе индекс Дау еще не характеризует потенциальный ущерб от пожара или взрыва. Его значение построено таким образом, чтобы оно было однозначно связано с площадью, на которую может распространиться пожар или взрыв в случае их возникновения. Определение такой площади (или радиуса воздействия) может быть сделано по специальным таблицам или графикам, которые обычно приводятся в справочниках, выпускаемых различными агентствами в Европе или США.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|