Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Понятие о выборочном наблюдении




 

Наиболее совершенным и научно обоснованным способом несплошного наблюдения является выборочное наблюдение, получившее в настоящее время широкое применение в работе органов государственной статистики, научно-исследовательских лабораторий, институтов, предприятий. Его использование позволяет лучше организовать наблюдение, обеспечивает быстроту проведения, экономию труда и средств на получение и обработку информации.

Выборочное наблюдение при строгом соблюдении условий случайности и достаточно большой численности отобранных единиц репрезентативно (представительно); по результатам изучения определенной части единиц с достаточной для практики степенью точности можно судить о всей совокупности. Одна вычисленные по материалам выборочного наблюдения статистические показатели не будут точно совпадать с соответствующим характеристиками для всей совокупности (генеральной совокупности). Величина этих отклонений называется ошибкой наблюдения, которая складывается из ошибок двоякого рода: ошибки регистрации (точности) и ошибки репрезентативности.

Ошибки регистрации свойственны любому наблюдению (сплошному и несплошному). Они вызываются несовершенств измерительных приборов, недостаточной квалификацией наблюдателя, неточностью подсчетов и т. п. Однако при выборочном наблюдении они значительно меньше, так как в этом случае И пользуются более квалифицированные и подготовленные кадры.

Ошибки репрезентативности свойственны только несплошным наблюдениям. Они характеризуют размер расхождений между величинами показателя, полученного в выборочной и генеральной совокупности в условиях одинаковой точности единичных наблюдений. Ошибки репрезентативности могут быть систематическими и случайными. Систематические ошибки возникают при нарушении установленных правил отбора единиц. Случайные ошибки репрезентативности обязаны своим возникновением недостаточно равномерным представлением в выбо­рочной совокупности различных категорий единиц генеральной совокупности.

Величина случайной ошибки определяет надежность данных выборочного наблюдения, их пригодность для суждения о генеральной совокупности. При помощи формул теории вероятности можно рассчитать возможную максимальную случайную ошибку - вероятный (стохастический) предел ошибки.

Максимально возможная ошибка - это такая величина отклонений выборочной средней (доли) от генеральной, вероятность превышения которой вследствие случайных причин в условиях данной выборки очень мала.

Величина случайной ошибки репрезентативности зависит от:

· степени колеблемости изучаемого признака в генеральной совокупности;

· способа формирования выборочной совокупности·

· объема выборки.

По степени охвата единиц исследуемой совокупности различают большие и малые выборки.

По способу формирования выборочной совокупности различают следующие виды выборочного наблюдения: простая случайная (собственно случайная) выборка, расслоенная (типическая или районированная), серийная, механическая, комбинированная, ступенчатая, многофазная.

Совокупность единиц, из которых производится отбор, при­нято называть генеральной совокупностью. Совокупность отобранных единиц из генеральной совокупности называют выборочной совокупностью.

N - объем генеральной совокупности (число входящих в нее единиц);

n - объем выборочной совокупности (число единиц, попавших в выборку);

- генеральная средняя (среднее значение признака в генеральной совокупности);

- выборочная -средняя (среднее значение признака в выборочной совокупности);

p - генеральная доля (доля единиц, обладающих данным признаком в генеральной совокупности);

w - выборочная доля (доля единиц, обладающих данным признаком в выборочной совокупности);

2 - генеральная дисперсия (дисперсия признака в генерал ной совокупности);

S2 - выборочная дисперсия (дисперсия признака в выбора ной совокупности);

 - среднее квадратическое Отклонение признака в генеральной совокупности;

S - среднее квадратическое Отклонение признака в выборочной совокупности.

 

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...