Пример. Решить систему. 1.4. Метод Гаусса решения систем линейных алгебраических уравнений. 1.5. Элементы линейной алгебры и аналитической геометрии
Пример. Решить систему
(1. 6)
Можно показать, что rang A=rang =2. В качестве базисного минора рассмотрим , следовательно, система равносильна системе
Оставим слева члены, содержащие коэффициенты базисного минора, получим систему
Решаем по формулам Крамера, принимая
Тогда
Решением (1. 6) является упорядоченная четверка чисел. Учитывая, что и - свободные переменные, которые могут принимать любые значения, получим:
Ясно, что система имеет бесконечно много решений.
1. 4. Метод Гаусса решения систем линейных алгебраических уравнений
В п. 1. 2. рассматривали решение систем, у которых число уравнений совпадает с числом неизвестных и с определителем из коэффициентов, от-личным от нуля. Метод Гаусса – еще один способ решения, не требующий таких ограничений.
Рассмотрим систему
Будем считать, что . Если , то перенумеровывая неиз-
вестные, получим первый коэффициент, отличный от нуля.
Умножим первое уравнение на и сложим почленно со вторым, затем первое умножим на и сложим с третьим. Продолжая этот процесс, получим равносильную систему при условии, что первое уравнение остается неизменным:
где - новые коэффициенты, - новые свободные члены.
Умножая второе уравнение на и складывая с соответ-
ствующими уравнениями, получим систему
Продолжая этот процесс, можем получить одну из следующих ситуаций:
1. Одно из уравнений системы имеет отличную от нуля правую часть и нулевые коэффициенты в левой. В этом случае система не имеет решений.
2. Система имеет вид
где
Если m=n, то система совместна, имеет единственное решение. В этом случае из последнего уравнения определяется , из предпоследнего и так далее (обратный ход Гаусса).
Если m< n, то переменные - свободные переменные и, следо-вательно, переносятся в правую часть (см. п. 1. 3. ). Затем обратным ходом Гаусса переменные выражаются через свободные переменные.
В процессе последовательного исключения неизвестных могут поя-виться уравнения 0=0. Эти уравнения отбрасываются.
На практике удобнее работать не c системой (1. 7), а с ее расширенной матрицей, так как в рассмотренном процессе преобразовываются коэффи-циенты при неизвестных, в расширенной матрице при этом производятся элементарные преобразования со строками.
1. 5. Элементы линейной алгебры и аналитической геометрии
Пример 1. 1. Заданы матрицы , , . Вычислить:
.
Решение. 1. Вычислим произведение матриц . Найдем размерность матрицы-произведения, если умножение заданных матриц возможно: . Результатом вычисления будет матрица размера .
Вычислим элементы матрицы-произведения, умножая элементы каждой строки матрицы на соответствующие элементы столбцов матрицы следующим образом:
.
2. Найдем матрицу . При транспонировании строки и столбцы матрицы меняются местами с сохранением порядка:
.
3. Умножим матрицу на число 5, при этом каждый элемент матрицы умножается на это число:
.
4. Вычисляем матрицу :
.
Пример 1. 2. Решить систему линейных алгебраических уравнений:
1) методом обратной матрицы; 2) методом определителей (методом Крамера); 3) методом Гаусса.
Воспользуйтесь поиском по сайту: