Приложение 2. Приведем также уравнения, составленные по второму закону Кирхгофа для контурных токов: . Развязывание индуктивных связей
Приложение 2 Расчет разветвленных цепей при наличии взаимной индуктивности Расчет разветвленных цепей можно вести, составляя уравнения по первому и второму законам Кирхгофа или методом контурных токов. Метод узловых потенциалов непосредственно непригоден. Объясняется это тем, что ток в любой ветви зависит не только от ЭДС находящегося в ней источника и от потенциалов тех узлов, к которым ветвь присоединена, но и от токов других ветвей, которые наводят ЭДС взаимной индукции. Поэтому нельзя простым путем выразить токи ветвей через потенциалы узлов и ЭДС источников, как в цепях без индуктивно связанных элементов.
Приведем также уравнения, составленные по второму закону Кирхгофа для контурных токов: Сокращенно последние уравнения можно записать так: где - комплексные сопротивления контуров 1, 2 и 3; Заметим, что в комплексные сопротивления контуров и в комплексные взаимные сопротивления двух контуров слагаемые входят со знаком плюс или минус в зависимости от того, совпадают или не совпадают по отношению к одноименным выводам элементов цепи k и s направление обхода контура через элемент к и положительное направление тока через элемент s.
Рис. 1 Приложение 3 Развязывание индуктивных связей Расчет индуктивно связанных цепей осуществляют, как правило, по уравнениям Кирхгофа, так как применение других методов расчета имеет ряд особенностей. Однако если индуктивно связанные катушки имеют общий узел, бывает целесообразно преобразовать их в эквивалентную цепь, не содержащую индуктивных связей, после чего для анализа цепи можно применять все стандартные методы расчета. На рис. приведены две схемы индуктивно связанных катушек, имеющих общий узел, в котором сходятся либо однополярные выводы катушек, либо разнополярные, и соответствующие им эквивалентные схемы цепи без индуктивной связи (направление токов, т. е. характер включения катушек, может быть при этом произвольным).
Развязывание индуктивных связей осуществляется попарно ( раздельно для каждой пары катушек ) в соответствии с правилом для соединений катушек с разноименными (а) и одноименными (б) зажимами (Рис. 1)
а) б) Рис. 1
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|