Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Ранг матрицы. Рассмотрим матрицу специального вида. Пример 3. Метод Гаусса решения СЛАУр. Замечание. Рангом матрицы называется наибольший из порядков отличных от нуля ее миноров




Ранг матрицы

 

Пусть дана матрица .

        

Рангом матрицы называется наибольший из порядков отличных от нуля ее миноров. Обозначение: rang A, r(А) или r.

Очевидно,  – меньшее из чисел m и n.

Минор, порядок которого определяет ранг матрицы, называется базисным. Вычисление всех миноров отличных от нуля трудоемкая операция. На практике для вычисления r(A) используют метод Гаусса.

Элементарными преобразованиями называются следующие действия над матрицами:

1. Вычеркивание нулевой строки.

2. Умножение какой либо строки на число.

3. Прибавление к одной из строк другой строки, умноженной на любое число.

4. Перестановка двух столбцов или двух строк.

 

Теорема 1. Ранг матрицы не меняется при элементарных преобразованиях.

 

Рассмотрим матрицу специального вида

в которой все «диагональные элементы»  отличны от нуля, а все элементы расположенные ниже диагональных, равны нулю. Такую матрицу будем называть трапециевидной. При r = n она будет треугольной.

 

Теорема 2. Ранг трапециевидной матрицы равен числу ее ненулевых строк.

 

Теорема 3. Всякую матрицу можно с помощью конечного числа элементарных преобразований привести к трапециевидному виду.

 

Метод Гаусса вычисления ранга матрицы состоит в приведении матрицы к трапециевидному виду и в подсчете ее ненулевых строк.          

 

Пример 3

Найти ранг матрицы .

Решение                                

~      ~  

На первом шаге первую строку матрицы умножили на (-2) и сложили со второй строкой, умножили первую строку на (-4) и сложили с третьей строкой. На втором шаге вторую строку умножили на (-3) и сложили с третьей строкой. Нулевую строку вычеркнули. Таким образом, ранг матрицы  r = 2.

 

Метод Гаусса решения СЛАУр

Пусть дана система линейных алгебраических уравнений (СЛАУр)

 

 

Поставим задачу: исследовать данную систему, т. е. выяснить, не решая ее, совместна она или несовместна, а если совместна, то определенна она или неопределенна.

На все эти вопросы отвечает теорема Кронекера - Капелли.

Пусть дана матрица системы  .

Рассмотрим расширенную матрицу системы

.

 

Теорема Кронекера – Капелли.

СЛАУр совместна тогда и только тогда, когда ранг расширенной матрицы равен рангу матрицы системы:

или .

Замечание

Если  и , где n – число неизвестных, то система определенна; если , то система неопределенна, если же , то система несовместна.

Метод Гаусса решения СЛАУр состоит в следующем.

 

1. Выписывают расширенную матрицу системы

и с помощью элементарных преобразований приводят ее к трапециевидному виду.

2. Применяя теорему Кронекера – Капелли, исследуют систему, получая один из случаев:

­– система совместна и определенна,

– система совместна и неопределенна,

– система несовместна.

Трапециевидная форма расширенной матрицы С в каждом из этих случаев имеет вид:

 

1)   С ~ , ,

  следовательно, система определенна, имеет единственное решение,

 

2) С ~ ,

следовательно, система неопределенна, имеет бесконечное множество решений,

 

3) если какая-либо строка матрицы С имеет вид , то система несовместна (решений нет).

 

3. Для решения системы, если оно существует, следует записать новую систему, отвечающую полученной трапециевидной матрице, которая является более простой по сравнению с исходной и решить ее (обратный ход).

 

Пример 4

Исследовать и решить СЛАУр: .

Решение

Составим расширенную матрицу и проведем над ней эквивалентные преобразования для определения   и .

                                   

  ~     ~

~ ,

 

Таким образом, , следовательно, по теореме                                           Кронекера – Капелли система совместна и определенна.

Составим систему, соответствующую последней матрице, эквивалентную исходной:

Þ .

 

Таким образом, .

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...