Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

2.2. Элементы векторной алгебры и аналитической геометрии в пространстве




2. 2. Элементы векторной алгебры и аналитической геометрии в пространстве

 

Векторные величины (векторы) – это такие величины, которые характеризуются не только своими числовыми значениями, но и направлением.

Для изображения векторных величин служат геометрические векторы. Геометрический вектор – это направленный отрезок.

Координатами вектора  в прямоугольной системе координат  называются проекции  вектора  на оси координат. Запись  означает, что вектор  имеет координаты .

Модуль вектора (его длина) вычисляется по формуле

.

Чтобы найти координаты вектора, заданного координатами точек его начала и конца надо найти разности соответствующих координат его конца и начала, т. е. если задан вектор , где , то

.

Тогда модуль вектора  находится по формуле

.

Скалярным произведением двух векторов называется число, равное произведению их модулей на косинус угла между ними.

Обозначают: ( ) или . По определению

, где .

Пусть векторы заданы аналитически:

.

Выражение скалярного произведения через координаты                                                  перемноженных векторов:

.

Косинус угла между двумя векторами можно найти по формуле

.

Векторным произведением вектора   на вектор   называется вектор, обозначаемый символом  или , определяемый условиями:

1) модуль этого вектора равен произведению модулей перемножаемых векторов на синус угла между ними, т. е.

                                        ;

2) этот вектор перпендикулярен каждому из перемножаемых векторов, т. е. плоскости, определяемой этими векторами;

3) направлен по перпендикуляру к этой плоскости так, что векторы  и  составляют правую тройку (т. е. если при наблюдении с конца вектора  кратчайший поворот от вектора   к вектору  происходит против часовой стрелки. )

 

Модуль векторного произведения численно равен площади параллелограмма, построенного на векторах сомножителях – в этом состоит геометрический смысл модуля векторного произведения:

.

Пусть даны два вектора   и . Выражение векторного произведения через координаты перемножаемых векторов:

.

 

Смешанным произведением трех векторов  называется число, равное скалярному произведению вектора  на вектор , т. е. .

Если векторы  заданы своими прямоугольными координатами , то их смешанное произведение вычисляется по формуле

.

Геометрический смысл смешанного произведения: объем параллелепипеда, построенного на 3-х некомпланарных векторах, равен абсолютной величине их смешанного произведения

.

Тогда объем треугольной пирамиды, построенной на этих же векторах, находится по формуле

.

Три точки пространства, не лежащие на одной прямой, определяют единственную плоскость. Если ,  три данные точки, не лежащие на одной прямой, а  произвольная точка плоскости, то уравнение плоскости, проходящей через три точки, имеет вид

.

Уравнение прямой, проходящей через две точки пространства  имеет вид

.

Угол между прямой и плоскостью находится по формуле

,

где коэффициенты выбирают из канонических уравнений прямой

и общего уравнения плоскости

,

где  - вектор нормали к плоскости.

Условие перпендикулярности прямой и плоскости:

.

 

 

Пример

Даны вершины треугольной пирамиды  Найти:

1) угол между ребрами  и ;

2) площадь грани ;

3) объем пирамиды ;

4) длину высоты, опущенной из вершины  на грань ;

5) угол между ребром  и гранью ;

6) уравнение высоты, опущенной из вершины  на грань .

Решение

              А4                              А2                                       В    А1                                        А3                   Рис. 2 1) Угол между ребрами  и  находим с помощью скалярного произведения векторов по формуле , найдем координаты векторов   тогда косинус угла между векторами .

2) Площадь грани  находим с помощью векторного произведения векторов. Найдем координаты вектора , тогда площадь треугольника находим по формуле

.

Найдем векторное произведение векторов

модуль векторного произведения равен

,  

откуда находим площадь треугольника

3)  Объем пирамиды находим с помощью смешанного произведения векторов по формуле

,

так как выше найдены координаты векторов

,

подставим координаты векторов в формулу, получим

.

4) Для нахождения длины высоты h, опущенной из вершины  на грань  применим формулу

,

откуда находим

5) Уравнение прямой  находим по формуле уравнения прямой, проходящей через две точки :

.

Для нахождения уравнения плоскости  используем уравнение плоскости, проходящей через три точки

.

 Подставим координаты точек в уравнение, получим

,

,

,

 или 

.

Угол между прямой и плоскостью находится по формуле

,

в нашем случае

.

 

6) Общее уравнение плоскости :

,

нормальный вектор плоскости .

Уравнение высоты : .

Условие перпендикулярности прямой и плоскости: .

В нашем случае , тогда уравнение высоты имеет вид

 

 

Черняк Татьяна Анатольевна

Состина Елена Викторовна

Пушкина Вера Павловна

СБОРНИК ЗАДАНИЙ ПО ЛИНЕЙНОЙ АЛГЕБРЕ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 

по курсУ «Линейная алгебра и аналитическая геометрия»
для студентов заочного отделения

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...