Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Внутренняя и внешняя сфера комплексного соединения




Глава 1. Основные понятия координационной теории

С 4, 72. Основы современной координационной теории были изложены в конце прошлого века швейцарским химиком Альфредом Вернером, обобщившим в единую систему весь накопившийся к тому времени экспериментальный материал по комплексным соединениям. Им были введены понятия о центральном атоме ЦА (комплексообразователь) и его координационном числе, внутренней и внешней сфере комплексного соединения, изомерии комплексных соединений, предприняты попытки объяснения природы химической связи в комплексах.

Комплексообразователь

С5.Образование комплексного иона или нейтрального комплекса можно представить себе в виде обратимой реакции общего типа:

M + n L [ML n ]

где M – нейтральный атом или положительно или отрицательно заряженный условный ион, объединяющий (координирующий) вокруг себя другие атомы, ионы или молекулы L. Атом M получил название комплексообразователя или центрального атома.

Вкомплексныхионах [Cu(NH3)4]2+, [SiF6]2-, [Fe(CN)6]4-, [BF4]- комплексообразователями являются медь(II), кремний(IV), железо(II), бор(III).
Чаще всего комплексообразователем служит атом элемента в положительной степени окисления.
Отрицательные условные ионы (т.е. атомы в отрицательной степени окисления) играют роль комплексообразователей редко. Это, например, атом азота(-III) в катионе аммония [NH4]+ и т.п.

Атом-комплексообразователь может обладать нулевой степенью окисления: карбонильные комплексы никеля и железа, имеющие состав [Ni(CO)4] и [Fe(CO)5], содержат атомы никеля(0) и железа(0).

Комплексообразователь (выделен синим цветом) может участвовать в реакциях получения комплексов, как будучи одноатомным ионом, например:

Ag + + 2 NH3 [ Ag (NH3)2]+;
Ag + + 2 CN- [ Ag (CN)2]-

так и находясь в составе молекулы:

Si F4 + 2 F- [ Si F6]2-;

I 2 + I- [ I (I)2]-;

P H3 + H+ [ P H4]+;

B F3 + NH3 [ B (NH3)F3]

С8. В комплексной частице может быть два и более атомов-комплексообразователей. В этом случае говорят о многоядерных комплексах.

Комплексное соединение может включать несколько комплексных ионов, в каждом из которых содержится свой комплексообразователь.
Например, в одноядерном комплексном соединении состава [K(H2O)6][Al(H2O)6](SO4)2 комплексообразователи KI и AlIII, а в [Cu(NH3)4][PtCl6] - CuII и PtIV.

1.2. Лиганды. С6. В комплексном ионе или нейтральном комплексе вокруг комплексообразователя координируются ионы, атомы или простые молекулы (L). Все эти частицы, имеющие химические связи с комплексообразователем, называются лигандами (от латинского " ligare " - связывать). В комплексных ионах[SnCl6]2- и [Fe(CN)6]4- лигандами являются ионы Cl- и CN-, а в нейтральном комплексе [Cr(NH3)3(NCS)3] лиганды – молекулы NH3 и ионы NCS-.

Лиганды, как правило, не связаны друг с другом, и между ними действуют силы отталкивания. В отдельных случаях наблюдается межмолекулярное взаимодействие лигандов с образованием водородных связей.

С 7,9. Лигандами могут быть различные неорганические и органические ионы и молекулы. Важнейшими лигандами являются ионы CN-, F-, Cl-, Br-, I-, NO2-, OH-, SO3S2-, C2O42-, CO32-, молекулы H2O, NH3, CO, карбамида (NH2)2CO, органических соединений – этилендиамина NH2CH2CH2NH2, a-аминоуксусной кислоты NH2CH2COOH и этилендиаминтетрауксусной кислоты (ЭДТА):

и другие.

Дентатность лиганда

С 6,7. Чаще всего лиганд бывает связан с комплексообразователем через один из своих атомов одной двухцентровой химической связью. Такого рода лиганды получили название монодентатных. К числу монодентатных лигандов относятся все галогенид-ионы, цианид-ион, аммиак, вода и другие.

Некоторые распространенные лиганды типа молекул воды H2O, гидроксид-иона OH-, тиоцианат-иона NCS-, амид-иона NH2-, монооксида углерода CO в комплексах преимущественно монодентатны, хотя в отдельных случаях (в мостиковых структурах) становятся бидентатными.

Существует целый ряд лигандов, которые в комплексах являются практически всегда бидентатными. Это этилендиамин, карбонат-ион, оксалат-ион и т.п. Каждая молекула или ион бидентатного лиганда образует с комплексообразователем две химические связи в соответствии с особенностями своего строения:

Например, в комплексном соединении [Co(NH3)4CO3]NO3 бидентатный лиганд – ион CO32-- образует две связи с комплексообразователем – условным ионом Co(III), а каждая молекула лиганда NH3 – только одну связь:

Примером гексадентатного лиганда может служить анион этилендиаминтетрауксусной кислоты:

Полидентатные лиганды могут выступать в роли мостиковых лигандов, объединяющих два и более центральных атома.

Координационное число

С 6. Значение КЧ комплексообразователя зависит от его природы, степени окисления, природы лигандов и условий (температуры, природы растворителя, концентрации комплексообразователя и лигандов и др.), при которых протекает реакция комплексообразования. Значение КЧ может меняться в различных комплексных соединениях от 2 до 8 и даже выше. Наиболее распространенными КЧ являются 4 и 6.

Между значениями КЧ и степенью окисления элемента-комплексообразователя существует определенная зависимость. Так, для элементов-комплексообразователей, имеющих степень окисления +I (AgI, CuI, AuI, II и др.) наиболее характерно КЧ 2 – например, в комплексах типа [Ag(NH3)2]+, [Cu(CN)2]-, [IBr2]-.

Элементы-комплексообразователи со степенью окисления +II (ZnII, PtII, PdII, CuII и др.) часто образуют комплексы, в которых проявляют КЧ 4, такие как [Zn(NH3)4]2+, [PtCl4]2-, [Pd(NH3)2Cl2]0, [ZnI4]2-, [Cu(NH3)4]2+.

В аквакомплексах КЧ комплексообразователя в степени окисления +II чаще всего равно 6: [Fe(H2O)6]2+, [Mg(H2O)6]2+,[Ni(H2O)6]2+.

Элементы-комплексообразователи, обладающие степенью окисления +III и +IV (PtIV, AlIII, CoIII, CrIII, FeIII), имеют в комплексах, как правило, КЧ 6.
Например, [Co(NH3)6]3+, [Cr(OH)6]3-, [PtCl6]2-, [AlF6]3-, [Fe(CN)6]3-.

Известны комплексообразователи, которые обладают практически постоянным КЧ в комплексах разных типов. Таковы кобальт(III), хром(III) или платина(IV) с КЧ 6 и бор(III), платина(II), палладий(II), золото(III) с КЧ 4. Тем не менее большинство комплексообразователей имеет переменное КЧ. Например, для алюминия(III) возможны КЧ 4 и КЧ 6 в комплексах [Al(OH)4]- и [Al(H2O)2(OH)4]-.

КЧ 3, 5, 7, 8 и 9 встречаются сравнительно редко. Есть всего несколько соединений, в которых КЧ равно 12 – например, таких как K9[Bi(NCS)12].

Внутренняя и внешняя сфера комплексного соединения

С 5. Лиганды, непосредственно связанные с комплексообразователем, образуют вместе с ним внутреннюю (координационную) сферу комплекса.
Так, в комплексном катионе [Cu(NH3)4]2+ внутренняя сфера образована атомом комплексообразователя – меди(II) и молекулами аммиака, непосредственно с ним связанными.
Обозначается внутренняя сфера квадратными скобками: [Fe(CN)6]3-, [HgI4]2-, [SnCl6]2-.
В зависимости от соотношения суммарного заряда лигандов и комплексообразователя внутренняя сфера может иметь положительный заряд, например,[Al(H2O)6]3+, либо отрицательный, например, [Ag(SO3S)2]3-, или нулевой заряд, например, как для [Cr(NH3)3(NCS)3]0.

Ионы, нейтрализующие заряд внутренней сферы, но не связанные с комплексообразователем ковалентно, образуют внешнюю сферу комплексного соединения.
Например, в комплексном соединении [Zn(NH3)4]Cl2 два иона Cl- находятся во внешней сфере:

Внешнесферные ионы Cl- находятся на более значительном удалении от комплексообразователя, чем молекулы NH3, иначе говоря, расстояние Zn – Cl больше, чем длина химической связи Zn – N. Более того, химическая связь комплексного катиона [Zn(NH3)4]2+ и хлорид-ионов Cl- имеет ионный характер, в то время как молекулы аммиака NH3, входящие во внутреннюю сферу, образуют с комплексообразователем Zn(II) ковалентные связи по донорно-акцепторному механизму (донором неподеленных пар электронов являются атомы азота в NH3). Таким образом, различие между лигандами внутренней сферы и ионами внешней сферы очень существенно.

В [Cu(NH3)4](OH)2 и K2[HgI4] внешнесферными ионами являются соответственно ионы OH- и K+. Вполне понятно, что в нейтральных комплексах [Cr(NH3)3(NCS)3]0 и [Pd(NH3)2Cl2]0 внешняя сфера отсутствует.

С 5. Обычно внешнюю сферу составляют простые одноатомные или многоатомные ионы. Однако возможны случаи, когда КС состоит из двух и более внутренних сфер, выполняющих функции катионной и анионной части соединения. Здесь каждая из внутренних сфер является внешней по отношению к другой.
Например, в соединениях [Cu(NH3)4][PtCl6] и [Ni(NH3)6]2[Fe(CN)6] формально функции внешнесферных ионов могут выполнять:

· комплексные катионы [Cu(NH3)4]2+ и [Ni(NH3)6]2+,

· комплексные анионы [PtCl6]2- и [Fe(CN)6]4-.

 

Многоядерные комплексы

С 8. Если в комплексном ионе или нейтральном комплексе содержатся два и более комплексообразователей, то этот комплекс называется многоядерным. Среди многоядерных комплексов выделяют мостиковые, кластерные и многоядерные комплексы смешанного типа.

Атомы комплексообразователя могут быть связаны между собой с помощью мостиковых лигандов, функции которых выполняют ионы OH-, Cl-, NH2-, O22-, SO42-и некоторые другие.
Так, в комплексном соединении (NH4)2[Co2(C2O4)2(OH)2] мостиковыми служат бидентатные (2 связи) гидроксидные лиганды:

 

 

Когда атомы комплексообразователя связаны между собой непосредственно, многоядерный комплекс относят к кластерному типу.
Так, кластером является комплексный анион [Re2Cl8]2-:

в котором реализуется четверная связь Re – Re: одна σ-связь, две π- связи и одна δ-связь. Особенно большое число кластерных комплексов насчитывается среди производных d -элементов.

Многоядерные комплексы смешанного типа содержат как связь комплексообразователь–комплексообразователь, так и мостиковые лиганды.
Примером комплекса смешанного типа может служить карбонильный комплекс кобальта состава [Co2(CO)8], имеющий следующее строение:

Здесь имеется одинарная связь Co – Co и два бидентатных карбонильных лиганда CO, осуществляющих мостиковое соединение атомов-комплексообразователей.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...