Как найти обратную матрицу?
⇐ ПредыдущаяСтр 8 из 8 Рассмотрим квадратную матрицу . Обратную матрицу можно найти по следующей формуле: , где – определитель матрицы , – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы . Понятие обратной матрицы существует только для квадратных матриц, матриц «два на два», «три на три» и т.д. Обозначения: Как вы уже, наверное, заметили, обратная матрица обозначается надстрочным индексом Начнем с простейшего случая – матрицы «два на два». Чаще всего, конечно, требуется найти обратную матрицу для матрицы «три на три», но, тем не менее, настоятельно рекомендую изучить более простое задание, для того чтобы усвоить общий принцип решения. Пример: Найти обратную матрицу для матрицы Решаем. Последовательность действий удобно разложить по пунктам. 1) Сначала находим определитель матрицы. Важно! В том случае, если определитель матрицы равен НУЛЮ – обратной матрицы НЕ СУЩЕСТВУЕТ. В рассматриваемом примере, как выяснилось, , а значит, всё в порядке. 2) Находим матрицу миноров . Матрица миноров имеет такие же размеры, как и матрица , то есть в данном случае . Возвращаемся к нашей матрице
– матрица миноров соответствующих элементов матрицы . 3) Находим матрицу алгебраических дополнений . Это просто. В матрице миноров нужно ПОМЕНЯТЬ ЗНАКИ у двух чисел: – матрица алгебраических дополнений соответствующих элементов матрицы . И всего-то лишь… 4) Находим транспонированную матрицу алгебраических дополнений . – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы . 5) Ответ. Вспоминаем нашу формулу Таким образом, обратная матрица: Как проверить решение? Необходимо выполнить матричное умножение либо Проверка: Получена уже упомянутая единичная матрица – это матрица с единицами на главной диагонали и нулями в остальных местах. Таким образом, обратная матрица найдена правильно. Переходим к более распространенному на практике случаю – матрице «три на три»: Пример: Найти обратную матрицу для матрицы Алгоритм точно такой же, как и для случая «два на два». Обратную матрицу найдем по формуле: , где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы . 1) Находим определитель матрицы. Также не забываем, что , а значит, всё нормально – обратная матрица существует. 2) Находим матрицу миноров . Матрица миноров имеет размерность «три на три» , и нам нужно найти девять чисел. Я подробно рассмотрю парочку миноров: Рассмотрим следующий элемент матрицы: Оставшиеся четыре числа записываем в определитель «два на два»
Как вы, наверное, догадались, необходимо вычислить девять определителей «два на два». Процесс, конечно, муторный, но случай не самый тяжелый, бывает хуже. Ну и для закрепления – нахождение еще одного минора в картинках: Окончательный результат: То, что все миноры получились отрицательными – чистая случайность. 3) Находим матрицу алгебраических дополнений . В матрице миноров необходимо СМЕНИТЬ ЗНАКИ строго у следующих элементов: 4) Находим транспонированную матрицу алгебраических дополнений . – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы . 5) Ответ: Проверка: Таким образом, обратная матрица найдена правильно. Пример 1 Умножить матрицы Решение: произведение существует, причём итоговая матрица состоит из 1 строки и 2 столбцов: Ответ: Пример 3 Возвести в квадрат матрицу Ответ: Метод Гаусса Решить методом Гаусса систему уравнений: Запишем расширенную матрицу системы: Сейчас я сразу нарисую результат, к которому мы придём в ходе решения: Сначала смотрим на левое верхнее число: Теперь первая строка у нас останется неизменной до конца решения. Уже легче. Единица в левом верхнем углу организована. Теперь нужно получить нули вот на этих местах: Нули получаем как раз с помощью «трудного» преобразования. Сначала разбираемся со второй строкой (2, –1, 3, 13). Что нужно сделать, чтобы на первой позиции получить ноль? Нужно ко второй строке прибавить первую строку, умноженную на –2. Мысленно или на черновике умножаем первую строку на –2: (–2, –4, 2, –18). И последовательно проводим (опять же мысленно или на черновике) сложение, ко второй строке прибавляем первую строку, уже умноженную на –2:
Результат записываем во вторую строку: Аналогично разбираемся с третьей строкой (3, 2, –5, –1). Чтобы получить на первой позиции ноль, нужно к третьей строке прибавить первую строку, умноженную на –3. Мысленно или на черновике умножаем первую строку на –3: (–3, –6, 3, –27). И к третьей строке прибавляем первую строку, умноженную на –3: Результат записываем в третью строку: На практике эти действия обычно выполняются устно и записываются в один шаг: Не нужно считать всё сразу и одновременно. Порядок вычислений и «вписывания» результатов последователен и обычно такой: сначала переписываем первую строку, и пыхтим себе потихонечку – ПОСЛЕДОВАТЕЛЬНО и ВНИМАТЕЛЬНО: Далее нужно получить единицу на следующей «ступеньке»: В данном примере это сделать легко, вторую строку делим на –5 (поскольку там все числа делятся на 5 без остатка). Заодно делим третью строку на –2, ведь чем меньше числа, тем проще решение: На заключительном этапе элементарных преобразований нужно получить еще один ноль здесь: Для этого к третьей строке прибавляем вторую строку, умноженную на –2: Последнее выполненное действие – причёска результата, делим третью строку на 3. В результате элементарных преобразований получена эквивалентная исходной система линейных уравнений: Теперь в действие вступает обратный ход метода Гаусса. Уравнения «раскручиваются» снизу вверх. В третьем уравнении у нас уже готовый результат: Смотрим на второе уравнение: . Значение «зет» уже известно, таким образом: И, наконец, первое уравнение: . «Игрек» и «зет» известны, дело за малым: Ответ: Метод Крамера
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|