Макроэкономические решения
При применении теории статистических игр на предприятии, в фирме бывает возможным получить дополнительную статистическую информацию, которая позволяет перейти от стратегической к статистической игре с природой. Очень часто при возможности многократного повторения как состояний природы, так и решений статистика мы можем принимать минимаксные байесовские решения. Для макроэкономических задач значительно реже удается получать информацию о состояниях природы. Кроме того, имея распределение вероятностей ее состояний, мы не всегда можем этой информацией воспользоваться. Принятие решения может носить одноразовый характер. В этой ситуации наилучшая байесовская стратегия при многократном принятии решения утрачивает свои оптимизационные свойства. Задачи, решаемые в условиях неопределенности, имеющие характер игры с природой, делятся на два типа: 1) в условиях полной неопределенности, когда отсутствует возможность получения дополнительной статистической информации о состояниях природы; основной моделью при этом служит стратегическая игра (W, A, L), которая не преобразуется в статистическую; 2) в условиях риска, если существует возможность сбора дополнительной статистической информации о распределении состояний природы; эти задачи можно преобразовать к статистической игре (W, D, R), в которой функции риска рассматриваются как платежи. Рассмотрим практический пример. Задача 6.3. Получение лицензии на новую продукцию. Требуется выбрать лучшую лицензию на выпуск легкового автомобиля у иностранных фирм. Имеются четыре предложения, следовательно, множество решении А = {а1, а2, а3, а4}, где а1 -решение о покупке лицензии у инофирмы Ai (i = ).
Фирмы требуют неодинаковые суммы за лицензии в зависимости от различных затрат на организацию производства и издержек эксплуатации. Известно, что основным требованиям владельцев автомобилей (эстетика, количество мест в салоне, скорость) удовлетворяют все четыре фирмы. В результате главным критерием являются затраты, связанные со сделкой. Пусть на основе экономического расчета вычислена эффективность покупки каждой из четырех лицензий. Эта эффективность зависит от длительности периода, в течение которого можно будет выпускать автомобили по лицензии, учитывая уровень их рентабельности и соответствия последним достижениям науки и техники в области автомобилестроения. Множество состояний природы , где Q1, Q2 - рентабельность и соответствие техническому уровню выпущенных по приобретенной лицензии первого и второго автомобилей, достигаемые соответственно через 15 и 25 лет. Представим формулу экономической эффективности: где У - продажная цена автомобиля; С - себестоимость; W- выигрыш игрока 1, в данном случае статистика, представляющего автомобильную промышленность. Отразим в табл. 6.3 полученные значения эффективности W (Q, a). Таблица 6.3.
О стратегиях природы нет информации, и ее невозможно получить. Решение нужно найти при полной неопределенности, так как нет данных для перехода от стратегической игры к статистической. Применим максиминный критерий Вальда. Для этого перепишем табл. 6.3 и найдем минимальные значения по строке и максимальные - по столбцу. Это определит матрицу игры (табл. 6.4). Таблица 6.4
Матрица игры (W, A, W) имеет седловую точку, равную 22 %, поскольку Итак, оптимальной нерандомизированной максиминной стратегией статистика (игрока 1), представляющего интересы автомобильной промышленности, будет решение а2, что соответствует покупке лицензии у фирмы А2 на производство легкового автомобиля.
Это наиболее осторожная стратегия в игре с природой при отсутствии дополнительной статистической информации. При этом в качестве функций платежей была принята эффективность сделки W (Q, a) = 22.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|