Особенности термодеформационных процессов при точечной сварке с обжатием периферийной зоны соединения
Формирование сварного соединения при точечной сварке с обжатием его периферийной зоны происходит по той же схеме, что и при традиционных способах КТС. В месте с тем, особенности силового воздействия на детали при КТС с обжатием периферийной зоны соединения, которые заключаются в сжатии деталей токопроводящими электродами усилием F Э и автономном обжатии периферийной зоны соединения кольцевыми силовыми пуансонами усилием F О (см. п. 1.2.3), при сохранении общего характера протекания основных термодеформационных процессов в зоне сварки приводят к существенному изменению количественных их параметров. Математическое моделирование процесса КТС с обжатием периферийной зоны соединения, путем решения уравнения (3.17) термодеформационного равновесия этого процесса сварки (алгоритм показан на рис. 4.1), впервые позволило определить не только характер изменения основных термодеформационных процессов в зоне формирования соединения при этом способе сварки, но и рассчитать их количественные параметры. При этом установлено следующее (рис. 4.7) [204, 210…212, 243].
Факторы, следствием воздействия которых является такое изменение напряжений в контуре уплотняющего пояска σ СР t и давления РЯ t расплавленного металла в ядре, те же: разупрочнение металла в зоне сварки и снижение его сопротивления пластической деформации σ Д t, а также уменьшение ширины уплотняющего пояска b П t, равной b П t = (d П t – d Я t)/2, из-за более быстрого роста диаметра ядра d Я t по сравнению с увеличением диаметра d П t уплотняющего пояска. Основным фактором, определяющим уменьшение сопротивления пластической деформации σ Д t металла в зоне сварки во время действия импульса сварочного тока также, как и при традиционных способах КТС, является его разупрочнение вследствие увеличения температуры ТД t Кроме того, как и при традиционных способах КТС, уменьшению в процессе КТС сопротивления пластической деформации металла в зоне сварки σ Д t также способствует и уменьшение при сварке скорости пластической деформации ut. Основное отличие характера протекания термодеформационных процессов при КТС с обжатием периферийной зоны соединения от их протекания при традиционных способах сварки заключается в особенностях характера силового взаимодействия деталей в контакте деталь–деталь, в частности, в возможности их силового взаимодействия вне контура уплотняющего пояска в площади кольцевого контакта деталь–деталь (см. рис. 3.2). Это оказывает существенное влияние на количественные параметры всех основных термодеформационных процессов, протекающих в зоне сварки, в частности, на величину напряжений в контуре уплотняющего пояска σ СР t и давления РЯ t в расплавленного металла ядре.
Так, в приведенном на рис. 4.7 примере, детали в месте сварки сжимаются токопроводящими электродами неизменным усилием F Э t = 6 кН и обжимными втулками также неизменным усилием обжатия F О t = 3,4 кН (рис. 4.5, в). При этом в одном варианте сварки детали обжимаются втулками с внутренним диаметром d ВВ, равным 16 мм (изменение параметров термодеформационных процессов в этом варианте сварки показано сплошными линиями), а в другом — 24 мм (в этом варианте сварки —штриховыми линиями). Поскольку в приведенном примере детали в месте сварки собраны без зазора (δ = 0 → F Д t = 0), то в соответствии с уравнением (3.17) к моменту начала импульса тока усилие сжатия в площади свариваемого контакта FCt равно усилию сжатия деталей токопроводящими электродами F Э t, а усилие в кольцевом контакте F К t вне контура уплотняющего пояска равно усилию обжатия деталей F О t кольцевыми силовыми пуансонами. С момента начала импульса тока вследствие нагрева и расширения металла в зоне сварки в контакте деталь–деталь начинает формироваться рельеф (уплотняющий поясок), увеличивающаяся высота которого h П t определяется по зависимости (3.84). Вследствие этого детали между контурами уплотняющего пояска и внутреннего диаметра обжимной втулки прогибаются и своей упругостью передают в зону сварки часть усилия обжатия деталей F О t, равную усилию F У t, величину которого можно определить по зависимости (3.19), сопротивления деталей их суммарному прогибу на высоту уплотняющего пояска. Таким образом, в процессе сварки на стадии нагрева усилие сжатия в свариваемом контакте FCt увеличивается пропорционально увеличению высоты h П t уплотняющего пояска на величину F У t, а усилие сжатия деталей в кольцевом контакте F К t на эту же величину уменьшается. Это сказывается на количественных параметрах всех термодеформационных процессов, протекающих в зоне сварки. Так, увеличение внутреннего диаметра обжимной втулки с 16 до 24 мм приводит к уменьшению усилия упруго прогиба деталей F У t, усилия сжатия в площади свариваемого контакта FCt, уменьшению диаметра уплотняющего пояска d П t, повышению температуры ТД t деформируемого металла и уменьшению его сопротивления пластической деформации σ Д t, а следовательно к уменьшению среднего значения напряжений в площади уплотняющего пояска σ СР t и давления расплавленного металла в ядре РЯ t.
При КТС с обжатием периферийной зоны соединения также, как и при традиционных способах сварки, до начала плавления металла все усилие сжатия в свариваемом контакте FCt уравновешивается металлом, находящимся в твёрдой фазе, и следовательно в этот период согласно зависимостям (3.10) и (3.21) FCt = F П t. В период после момента t НП начала плавления металла в свариваемом контакте до окончания импульса тока (при t НП < t ≤ t СВ) часть усилия сжатия в свариваемом контакте FCt уравновешивается давлением РЯ t расплавленного металла в ядре, которое по его площади развивает усилие F Я t (3.9), а часть — напряжениями в уплотняющем пояске, которые по его площади составляют усилие F П t (3.10). При этом, несмотря на уменьшение давления в ядре РЯ t в процессе его формирования, усилие F Я t в его площади увеличивается, что обусловлено более быстрым увеличение площади ядра по сравнению с уменьшением в нем давления, что приводит к увеличению доли усилия FCt, уравновешиваемой усилием F Я t в площади ядра, и уменьшению на эту же величину доли усилия FCt, уравновешиваемой усилием F П t в площади уплотняющего пояска. Таким образом, при КТС с обжатием периферийной зоны соединения в процессе сварки происходит не только перераспределение усилий сжатия в свариваемом контакте между уплотняющим пояском и ядром расплавленного металла, но и увеличение усилия сжатия в площади уплотняющего пояска. Это благоприятно сказывается на устойчивости процесса формирования соединения в части увеличения тепловыделения в начале процесса сварки и повышения устойчивости против образования выплесков в его конечной стадии.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|