Врезка 2. Эйнштейн – о топологии
Однажды А. Эйнштейна попросили совсем кратко, на понятном любому языке, пояснить, в чем состоит суть сделанных им открытий. Он ответил: все мы, люди, словно маленькие жучки с завязанными глазами, ползающие но поверхности большого мяча и воображающие, что двигаемся но плоскости. Я же первый понял, что мир, в котором я живу, искривлен. Но пока не совсем понятно, как именно он искривлен. (То есть, «по‑ научному», каков топологический тип космоса. ) А вот к чему. Несколько лет назад математик Г. Перельман установил похожий факт, но только в пространстве больших измерений. Факт про фигуры в многомерном пространстве, которые локально похожи на искривленное трехмерное пространство. Мы живом в трехмерном пространстве, мы четвертого измерения не видим и не чувствуем. Мы можем только рассуждать, что четвертое измерение это время, но объять его взором не можем. Поэтому мы не можем говорить так спокойно и убежденно, что сделать из шара тор в пространстве больших измерений нельзя. (Ведь в 4мерном пространстве, как указывалось выше, МОЖНО, не нарушая правил топологии, превратить незаметным образом человека с сердцем, расположенным слева, в человека с сердцем, расположенным справа. ) Нам нужен язык, на котором это можно доказать. И вот для того, чтобы это можно было доказывать, для того чтобы через много лет Перельман смог доказать «гипотезу Пуанкаре» (после того как ее доказали, она вместо гипотезы Пуанкаре стала называться теоремой Перельмана или Пуанкаре Перельмана), Эйлер начал большой путь. Он перевел то, что мы с вами считаем очевидным, в точное, железобетонное математическое рассуждение. Как же он это сделал? Он нарисовал на поверхности шара, мяча, арбуза, глобуса, любого круглого объекта некоторую карту. Иными словами, некий искривленный многогранник (рис. 29).
С точки зрения топологии, любой многогранник это тоже шар. Тетраэдр это шар. куб это шар. октаэдр, любой параллелепипед это всё шары. Например, потому что если их выполнить из резины и надуть, то получится футбольный мяч. то есть шар. Но до работ Эйлера еще не было «точки зрения топологии», так как не было и самой топологии. Эйлер «чувствовал», что все эти объекты одинаковые. В чём именно? И как это объяснить остальным людям? В особенности его интересовал вопрос: как доказать, что поверхность шара, поверхность бублика, поверхность кренделя неодинаковые? 8 В ответ на первый вопрос ясность позже внес Анри Пуанкаре (после того, как Огюст Коши внес должную ясность в вопрос, что такое «непрерывная функция»). Однако Эйлер сразу обратился ко второй задаче (о доказательстве неодинаковости двух поверхностей) и блестяще решил ее. Эйлер сделал следующее. Он нанес на поверхность шара многогранник картиночку «стран», причем страны необязательно треугольные (рис. 30). (Если говорить о «странах», то надо помнить, что рассматривается «Земной шар», не содержащий морей и океанов. ) При этом вся поверхность шара должна быть покрыта многоугольниками.
Главное, чтобы каждая страна была простым плоским объектом, без дырочек, как круг или квадрат. И далее он сделал то же самое с велосипедной камерой. Нанес такой многогранник, который является как бы «остовом» каретного колеса (машинных колес в то время еще не было! ). При этом вовсе не обязательно, чтобы количество и вид граней, а также количество вершин и ребер этого многогранника для шара и для колеса были одинаковы. Более того, они и не могут быть одинаковыми (как мы увидим ниже). А потом стал считать у этих многогранников эйлерову характеристику: величину В – Р + Г.
Число вершин минус число ребер плюс число граней. Как бы мы ни мяли и ни изгибали шар, наши грани – «страны» от этого не меняются. (Но, конечно, нельзя так смять страну, чтобы она вся превратилась в отрезок. Такого даже во время наполеоновских войн не происходило! А если говорить серьезно, то отрезок – одномерный объект, а страна – двумерный. ) То есть вершины остаются вершинами, ребра – ребрами, а грани – какими были (например, изогнутым пятиугольником или треугольником), такими и остались. А значит, величина В – Р + Г не меняется. Теперь считаем эту величину на колесе (по науке поверхность колеса (или бублика) называется словом «ТОР». А тор, заполненный внутри, называется полнот, орием. Поверхность же шара называется, как известно, сферой). И если сфера может перейти в тор, то картинка на шаре перейдет в картинку на колесе. И, значит, их эйлерова характеристика должна быть одинакова. Докажем, однако, что у любой фигуры, нарисованной на колесе, эйлерова характеристика равна 0, а у любой фигуры на шаре – равна 2. Слушатель: А если бы получилась одна и та же цифра, то что? А. С.: Мы не смогли бы сделать из этого никакого вывода. Мы бы не смогли сделать вывод, что они одинаковые, но не смогли бы сделать и вывод, что они разные. Но ведь есть и другие подходы, кроме формулы Эйлера. Для более сложных случаев.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|