Слушатель: Выпрямить.
А. С.: Да. Удалить вершину и выпрямить границу, убрав ненужный «кусок границы». Что изменилось? Слушатель: Минус вершина. Слушатель: Минус ребро. А. С.: Минус ребро, потому что из двух соседних ребер стало одно. Заметьте, что в выражении В – Р + Г опять ничего не изменилось. Итак, я буду упрощать картинку дальше (см. рис. 36). Что происходит, когда я сниму еще ребро? Пусть возникнет еще одна аномалия такого же типа. Возникнет вершина, из которой торчит ребро, и на другом конце ребра висит пустая вершина. Но по‑ прежнему В – Р + Г такое же. как было раньше. Что я теперь могу сделать с этой вершиной и этим
ребром? Стереть их целиком. При этом количество и вершин, и ребер уменьшится на 1 (рис. 36). Значит, выражение опять не изменилось. а «сеть» на поверхности стала проще. Я значительно увеличил грань, я убрал всё внутри нее. а выражение не менялось. «Сеть» свелась к двум граням, охватывающим сферу «сверху и снизу», разделенным замкнутой ломаной; в ней количество вершин равно количеству ребер, то есть В^Р + Г = Г = 2. Для сферы формула Эйлера тем самым доказана. Вопрос: «В какой ситуации логика этих рассуждений не может быть проведена? » Математик всегда изучает, в каком месте его рассуждение не пройдет. А не пройдет оно. например, на торе. На торе берем вершину и 2 ребра (рис. 37).
К такой картинке (рис. 37) приводится сниманием ребер любая «сеть» (достаточно общего вида ) на торе. Почему же нельзя снять еще одно ребро? Здесь я взываю к интуиции слушателей. Если мы разрежем тор по этим ребрам, а потом развернем, то получим квадрат. Чтобы лучше себе всё это представить, проделаем данные операции в обратном порядке: возьмем обычный квадрат из гибкой резины и изогнем его так. чтобы две противоположные стороны квадрата совпали (и затем склеим по совпавшим сторонам).
Получилась трубка (две оставшиеся стороны квадрата превратились при этом в два колечка). Изогнем трубку таким образом, чтобы эти колечки тоже совпали (и склеим их). Вот и получился из квадрата тор. По местам склеек восстанавливаем, где на этом торе расположены два ребра и одна вершина (из четырех вершин квадрата получилась ОДНА вершина на торе). Осталось пояснить только один важный вопрос: так все‑ таки можно или нельзя при изучении топологии делать склейки, разрывы и надрезы? Выше говорилось, что при этом может измениться топологический тип объекта. Значит, если мы хотим сохранить топологический тип объекта, этого делать нельзя. Но можно безболезненно делать многое другое: растяжение, сжатие, перемещение, поворот объекта, увеличение его в несколько раз. Эти операции позволяют представить изучаемый объект в самом простом для понимания виде. Например, конус (заполненный внутри) можно превратить в шар. Однако, если мы хотим изменить топологический тип, то можно (и даже нужно) делать разрезы и склейки. Эти операции так часто применяются в топологии, что даже носят специальное название: «топологическая хирургия». Более того, практически любой интересный для изучения объект можно склеить из весьма простых кусков. Скажем, торическую поверхность можно получить склейкой нескольких треугольных кусков. А когда склейка будет закончена, места склеек будут определять некоторую «сеть» на торе. «Сеть», составленная из треугольников (естественно, криволинейных), называется «триангуляцией». Простейшая «сеть» на торе (рис. 37) не является триангуляцией, так как она получена не из треугольников, а из квадратов... точнее, из одного‑ единственного квадрата. Но этой беде легко помочь: когда мы выше делали операции в обратном порядке, надо было на исходном квадрате нарисовать диагональ (то есть вместо квадрата далее рассматриваются «два склеенных треугольника»). После двух вышеописанных склеек из этого квадрата получится триангуляция тора. Она состоит (хотя в это и трудно поверить) из двух граней, трех ребер и одной вершины (к которой подходят все шесть концов этих трех ребер! ).
Можно порекомендовать слушателям купить свежеиспеченный бублик с маком и. прежде чем его съесть, внимательно осмотреть и понять, как именно проходят но его поверхности ребра данной триангуляции. Но специалист‑ тополог может представить себе эту триангуляцию даже с закрытыми глазами! Проверьте, возьмите любую ненужную велосипедную камеру, разрежьте и попытайтесь развернуть. Сохранится тот факт, что грань выглядит как квадрат или как круг, то есть она. как говорят математики. : топологически ·тривиальна. Она выглядит почти как обычная плоская фигура. А вот если мы снимем ребро (т. е. сотрем его с поверхности тора) и потом разрежем по оставшемуся ребру, у нас возникнет нетривиальная фигура в виде кольца. (Кстати, слово «тривиальный» восходит к слову «тривиум», обозначающему начальный уровень образования в средневековых университетах. ) Колечко на плоскости (рис. 38) не является топологически тривиальным. у него внутри дырка. Получается, что нам запрещено убирать это ребро, потому что мы изменим тривиальный объект на нетривиальный. Математика прошла долгий путь, прежде чем смогла понять, чем формально квадрат отличается от кольца.
Но если мы примем к сведению этот путь, то сможем воспользоваться его результатами. Сможем сказать, что можно снимать ребро тогда и только тогда, когда объект, который возникает, будет топологически тривиален, то есть будет похож на квадрат но своей топологической структуре. Именно поэтому я не имею нрава стирать на торе ребро. Итак, чему равно В^Р+Г для нашей картинки (рис. 38)? Сколько у нас вершин?
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|