Целенаправленное действие и его компоненты 8 глава
Однако, каким бы ни был оператор и сколь бы опосредованной ни была его связь с достижением конечной цели, его всегда можно охарактеризовать в трех аспектах: сложностью его организации, спецификой строения и коэффициентом его полезного действия. Рассмотрим последовательно эти три характеристики. Сложность оператора и количество информации Сложность организации операторов, как и любых других объектов, можно задавать несколькими способами, в соответствии с чем и меры сложности могут быть разными. Действительно, сложность организации любого объекта можно, по-видимому, выразить числом знаков (напр., бинарного кода), требующихся для описания этого объекта; числом и разнообразием составляющих данный объект элементов; числом «шагов» (операций), требующихся для построения этого объекта из исходного сырья, и т.п. И хотя каждый из таких подходов к выражению сложности объекта требует своего ограничения (т.е. до какого уровня следует доводить детализацию), причем условность здесь неизбежна, очевидно, что все эти способы связаны друг с другом так, что при возрастании любой избранной меры сложности будут возрастать значения и других. Если в качестве меры сложности объекта использовать число знаков бинарного кода (т.е. биты), требующихся для его описания (на избранном уровне организации), а в качестве меры количества кодирующей его информации – число знаков бинарного кода, задающих программу его построения (на этом же уровне организации), то мы получим возможность сравнивать их друг с другом. У А. Н. Колмогорова [1] существует высказывание, что с увеличением сложности объекта и, следовательно, числа битов, требующихся для полного его описания, количество информации, кодирующей построение этого объекта, будет так возрастать, что в конце концов, при достаточно большой сложности объекта, полностью совпадет с его описанием. Так ли это? Если программу построения объекта задавать, следуя дихотомическому принципу, то количество информации, кодирующей объект, будет возрастать как логарифм его сложности, т.е. будет все более отставать от степени его сложности. Можно, по-видимому, доказать утверждение, сформулированное выше, что сложность объектов возрастает быстрее, чем количество кодирующей их информации, например, как его степенная функция. Тогда разрыв между числом битов, описывающих объект, и числом битов, задающих программу его построения, с увеличением сложности объекта будет только возрастать.
Увеличение сложности объекта с увеличением количества кодирующей его информации означает, что в общем случае при этом увеличивается число составляющих его деталей, усложняется их взаиморасположение, возрастают энергозатраты как на построение такого объекта, так и на обеспечение его функционирования. В случае операторов – а мы уже условились, что все без исключения объекты, возникающие при участии информации, можно считать операторами, - это утверждение справедливо, конечно, лишь по отношению к тем ситуациям и целям, для которых эффективность соответствующей информации больше нуля. Таким образом, мы приходим к выводу, что сложность строения операторов всегда увеличивается так же или быстрее, как и количество кодирующей их информации. Это означает одновременное увеличение энергозатрат как на изготовление, так и на обеспечение функционирования этих операторов. Специфика операторов и семантика информации Семантику информации мы определили выше как ту ее особенность, которая обусловливает специфику кодируемого ею оператора. Из-за условности любой информации очевидно, что понятие «семантика» имеет смысл лишь по отношению к данной информационной системе, или, точнее, данному реализующему устройству этой системы. Под «спецификой» оператора имеются в виду особенности слагающих его компонентов и характер связей между ними, что, в конечном счете, и определяет успешность участия оператора в осуществлении того или иного целенаправленного действия. Следовательно, именно семантика информации определяет ту специфику оператора, благодаря которой вероятность успешного достижения цели, а следовательно, и ценность данной информации, имеет то или иное распределение на множестве пар «ситуация-цель» (см. глава 2). Способы выражения как специфики оператора, так и ценности информации оказываются идентичными.
Работа оператора, ее характеристики Первым этапом реализации информации является, как мы помним, создание оператора. Второй этап – деятельность, или работа этого оператора, результатом чего и будет осуществление события цели Z и возникновение побочных продуктов w, этому сопутствующее. Очевидно, что оба этапа реализации информации могут быть существенно разделены во времени, вплоть до такого крайнего случая, когда первый может произойти, а второй – нет. Очевидно также, что лишь завершение второго этапа является полной реализацией информации, и только от этого зависит ее дальнейшая судьба – как в том случае, когда успешность работы операторов побуждает «расширять их производство» и, следовательно, будет приводить к мультипликации кодирующей их информации, так и в том случае, когда итогом их работы является непосредственное воспроизведение информации. Работа операторов, как и любых машин, требует, прежде всего, затрат определенного количества энергии. Это обстоятельство сразу же вводит нас в круг привычного царства законов механики и термодинамики. Мы можем здесь, следовательно, говорить о затратах энергии на работу операторов, о расходовании энергии на «полезное действие» (достижение Z) и на производство «побочных продуктов» (w). Особенности информации определяют специфику оператора, а эта последняя – его термодинамические характеристики в данном информационном поле. Эти характеристики, в свою очередь, влияют на динамику самой информации, определяя скорость ее воспроизведения и степень мультипликативности. Поэтому динамику информации невозможно понять, не уяснив себе предварительно характер связей между ее свойствами и термодинамическими особенностями оператора.
КПД оператора и характеристики информации КПД оператора, как и любой другой машины, можно выразить отношением полезно затрачиваемой энергии к общему ее расходованию оператором при осуществлении целенаправленного действия. Согласно определению, полезной будем называть ту энергию Ez, которая расходуется только на осуществление «полезного действия», т.е. на достижение цели Z. Следовательно, разность между общей и полезной энергией идет на «производство» побочного продукта w данного целенаправленного действия:
Какие же характеристики информации и в какой мере обусловливают КПД ее оператора? К сожалению, строгих подходов к ответу на этот вопрос пока не существует. Лишь интуитивно можно полагать, что в самом общем случае расходы энергии на работу оператора должны возрастать с увеличением его сложности, а чем больше относительное количество «полезно» затрачиваемой энергии Ez, тем больше вероятность достижения цели в данном пространстве режимов при использовании данного оператора. Но, как мы видели выше, сложность оператора отражает количество Bz кодирующей его информации, а вероятность достижения цели определяет ее ценность Cz. Поэтому на основании чисто интуитивных соображений можно высказать предположение, что КПДQ увеличивается с ростом С/В =А1, т.е. что КПД оператора возрастает пропорционально ценности С и обратно пропорционально количеству В кодирующей его информации, или, что то же самое, пропорционально эффективности А, этой информации. Конечно, это справедливо только для пар «информация-оператор» данного типа и может проявляться лишь в последовательном ряду преемственных пар «информация-оператор». Таким образом, можно высказать предположение, что коэффициент полезного действия оператора возрастает с увеличением эффективности кодирующей его информации.
Это предположение, если его удастся строго доказать, может вполне претендовать на роль основной теоремы будущей теории информации. Предположение это столь фундаментально, что его следует рассмотреть более внимательно. Роль этого предположения состоит в том (как будет показано в главе 5), что только на его основе можно строить учение о динамике информации. Поэтому приведенное выше предположение можно рассматривать как «центральную догму» общей теории информации, без доказательства или принятия которой невозможно последовательное ее построение. Будем надеяться, что в недалеком будущем удастся не только доказать справедливость этого предположения, но и выяснить (хотя бы в общем виде) форму зависимости КПДQ от А1. Какова же может оказаться форма этой зависимости? Вряд ли она будет линейной. Скорее всего, зависимость эта будет иметь более сложный характер, и в нее будут входить коэффициенты, отражающие другие свойства и особенности информации, помимо ее количества и ценности. Но при константных значениях таких коэффициентов с увеличением А1 значение КПДQ будет, скорее всего, монотонно увеличиваться, и пока для нас этого вполне достаточно. Ведь вряд ли можно сомневаться, что значения этих коэффициентов будут отражать, главным образом, специфику пространства режимов и информационных полей. Из соотношения (15) можно вывести ряд следствий. Первое следствие. КПДQ не есть постоянная величина, но зависит от особенностей пространства режимов и информационного поля (т.е. от ситуации, при которой «работает» оператор, и той цели, для достижения которой он служит). Но распределение КПДQ по множеству информационных полей должно если не совпадать, то «однонаправленно отображать» распределение эффективности А, соответствующей информации. Второе следствие. КПДQ отображает «эффективность» достижения цели, мерой которой в информационном аспекте служит эффективность А1 самой информации. Это очень важное следствие. Оно наполняет реальным физическим содержанием понятие «эффективность информации», введенное выше чисто формально (см. главу 2). Нетривиальность ситуации состоит в том, что максимум КПДQ далеко не всегда и далеко не обязательно должен соответствовать максимуму вероятности достижения цели: лишь в начале, при значениях С ›› 1, КПДQ будет возрастать с увеличением С, а затем может либо стабилизироваться, либо начнет уменьшаться, изменяясь в разных ситуациях с разными скоростями. Но во всех случаях максимумы кривых КПДQ(В) и А1(В) должны совпадать, точнее, должны совпадать их положения по оси абсцисс, т.е. оба максимума должны приходиться на одни и те же значения В = Ворt.
Третье следствие. Хотя величина КПДQ может изменяться в интервале от 0 до 1, т.е. пробегать те же значения, что и Р – вероятность достижения цели в данном целенаправленном действии, а также С - ценность информации, это еще не означает, что КПДQ однозначно, хотя бы по направлению, отражает значение Р и С. Можно лишь думать, что при достаточно больших значениях КПДQ величины Р и С не должны быть очень малыми, хотя обратное заключение может быть неверным, ибо высоким значениям Р и С могут соответствовать очень низкие значение КПДQ. Примеров этому, пожалуй, можно привести множество. Это следствие очень богато содержанием и, можно думать, имеет огромное значение для анализа конкретных путей динамики информации. Четвертое следствие. Очевидно, что на производство «побочных продуктов» w расходуется лишь некоторая доля от всей энергии, требующейся оператору для осуществления целенаправленного действия: E W = Е (1 –КПДQ). Это, однако, не означает, что с увеличением КПДQ выход побочного продукта будет уменьшаться, а «безотходность производства» – возрастать. Можно думать, что выход побочного продукта будет примерно пропорционален абсолютному значению «бесполезного» расходования энергии в данном объеме пространства – именно пространства, а не «пространства режимов»! Поэтому выход побочного продукта и должен быть пропорционален ЕW = (EQ - Ez) = Eq (1 – КПДQ). В общем случае форма зависимости выхода побочного продукта w от КПДQ и, следовательно, от характеристик информации может иметь весьма сложный характер, но мы этот вопрос рассматривать не будем. Подведем теперь некоторые итоги. Важнейшим аспектом связи КПДQ и А1 является, таким образом, выявление и рассмотрение абсолютных соотношений между В, С и А информации, с одной стороны, и EQ, Ez и КПДQ, с другой. Решаема ли задача в общем виде, трудно сказать. Не исключено, что связь между А, и КПДQ установить удастся, но нахождение абсолютных значений соответствующих характеристик информации и операторов в каждом конкретном случае потребует, конечно, специальных расчетов. Нетрудно видеть, что все сказанное выше относится в равной мере к любым операторам, а главное, к любым информационным системам, обеспечивающим воспроизведение информации. Характеристики таких схем, как мы постарались показать выше, зависят от особенностей пространства режимов, в пределах которого эти системы призваны функционировать, т.е. совершать целенаправленные действия, сопровождающиеся появлением побочных продуктов. Поэтому «деятельность» информационных систем невозможно себе ясно представить, не рассматривая ее в теснейшей связи с характеристиками соответствующих ситуаций и теми изменениями, которые в них могут индуцироваться. Пространства режимов и их характеристики Пусть дана некоторая информация I, кодируемый ею оператор Q, и определено событие, являющееся целью Z. Каждый из факторов, необходимых и достаточных для осуществления с той или иной вероятностью р или Р этого события, можно представить себе как одну из осей координат некоторого многомерного пространства, число измерений которого равно числу этих факторов. Построенное таким образом пространство назовем «пространством режимов» данной информационной системы. За начало координат этого пространства можно принять точку, где значения всех факторов равны нулю; по мере нарастания степени выраженности каждого фактора оси пространства режимов будут расходиться. В любом пространстве режимов можно выделить две области: область спонтанного осуществления Z(p > 0) и область целенаправленного действия (Р > р). Первая из этих областей задается многомерной поверхностью, описывающей распределение по пространству режимов величины р, а вторая – распределением величины Р; очевидно, что вторая область включает в себя первую. В области спонтанного осуществления Z можно выделить «зону комфорта», где р≈1. Отрезок времени, в течение которого в зоне комфорта осуществляется Z, можно назвать «собственным временем» данной системы и использовать его для калибровки времени, в данной системе протекающего. Тогда значение 0<р≤1, а также все значения Р > 0 можно трактовать как «вероятности в единицу времени», подразумевая под последним собственное время системы. Функционирование оператора в области целенаправленного действия можно описывать как миграцию любой заданной точки этой области в зону комфорта и обратно. Получаемые при этом циклы можно характеризовать продолжительностью, длиной пути и вероятностью завершения и, таким образом, сопоставлять друг с другом. Очевидно, что пространство режимов любой информационной системы можно также характеризовать распределением на нем значения ценности С информации, эту систему определяющей. Отсюда легко перейти к распределению на пространстве режимов величины КПДQ, что приобретает особый интерес в качестве меры соответствия. Принцип соответствия. Мера соответствия Очевидно, что в действительности пространства режимов s «в чистом виде» не существуют и существовать не могут. В любой реальной ситуации помимо факторов, необходимых для осуществления целенаправленного действия и составляющих пространство режимов, обязательно присутствуют еще и факторы, безразличные по отношению к деятельности данной информационной системы, а также факторы, препятствующие ее деятельности, т.е. выступающие в роли помех. Безразличные факторы не влияют ни на р, ни на Р, а помехи могут уменьшать как р, так и Р и, следовательно, существенно влиять на величину С. Наличие таких факторов является очень важным обстоятельством, сказывающимся на работе информационных систем, а следовательно, и на динамике информации в данных конкретных условиях, т.е. в среде ее обитания. К этому нужно еще добавить, что по мере функционирования оператора любая реальная среда не остается постоянной, а постепенно изменяется в результате потребления имеющихся в ней ресурсов R, необходимых для осуществления целенаправленного действия, и накопления побочных продуктов w. Поэтому термин «пространство режимов» можно использовать лишь для формального описания работы той или иной информационной системы, а при описании реальной ситуации лучше пользоваться термином «зона обитания» (или каким-либо его синонимом), которую можно характеризовать исходным состоянием и последующей трансформацией. Для того, чтобы данный оператор в данной зоне обитания мог осуществлять данное целенаправленное действие, этот оператор должен соответствовать этой зоне. С равным правом можно говорить о соответствии друг другу зоны обитания и кодирующей данный оператор информации. Иными словами, чтобы данный оператор был работоспособным, информация, его кодирующая, должна «предусмотреть» не только пути миграции данной точки пространства режимов в зону комфорта, но и достаточную помехоустойчивость оператора. Требуемую помехоустойчивость можно обеспечивать по меньшей мере тремя способами: уходом от помех, защитой от них и репарацией (починкой) вызываемых помехами нарушений. Реальные формы распределения р и Р на зоне обитания (размерность которой может существенно превышать размерность включенного в нее пространства режимов) позволяют для каждой данной информационной системы построить распределение на этой зоне как эффективности А информации, так и КПД оператора. Второе из этих распределений можно использовать в качестве «критерия соответствия» друг другу информации и оператора, с одной стороны, и информации и зоны обитания, с другой. Мерой такого соответствия для каждой точки зоны обитания будет, естественно, служить соответствующая ей величина КПДQ. Теперь мы можем сформулировать принцип соответствия – один из основных принципов общей теории информации [9]: Мерой соответствия оператора и кодирующей его информации служит соответствие между зоной обитания и действием оператора, его КПДQ. Здесь, естественно, может встать вопрос о достаточности такого критерия соответствия, как величина КПДQ. Если рассматривать относительную конкурентоспособность нескольких информационных систем в данной зоне обитания, этого критерия, по-видимому, вполне достаточно. Можно показать, однако, что этот критерий соответствия будет «работать» и в случае конкуренции нескольких информационных систем: ведь каждую из них, а также вызываемые ими изменения зоны обитания можно выразить в форме одной или нескольких дополнительных осей координат данной зоны обитания или в форме вектора, отражающего скорость и направление трансформации этой зоны во времени. Хотя реальный аппарат, пригодный для такой интерпретации проблемы конкурентоспособности разных информационных систем, может быть достаточно сложным, принципиальных трудностей здесь не просматривается. Зона обитания и ее характеристики Итак, зоной (или средой) обитания некоторой информационной системы будем называть внешнюю по отношению к ней среду s, содержащую ресурсы R, необходимые для функционирования этой системы, а также отвечающую другим требованиям, необходимым для обеспечения успешности этого функционирования. Попадая в такую подходящую для нее зону, информационная система начинает «работать», поглощая ресурсы и создавая собственные копии, а также засоряя среду побочными продуктами своей деятельности. В ходе такой работы информационные системы, следовательно, не только воссоздают себя, но и трансформируют среду их обитания. Такие изменения среды обитания информационных систем всегда и неизбежно слагаются из трех составляющих. Во-первых, это изъятие из среды ресурсов R, необходимых для работы операторов информационных систем. Во-вторых, это поступление в среду побочных продуктов w работы операторов. В-третьих, это накопление в среде все новых экземпляров вновь создаваемых информационных систем, т.е. «заселение» ими среды обитания. Все это из множества возможных характеристик среды обитания позволяет выделить следующие, для нас наиболее существенные. Первая характеристика – это положение среды обитания по отношению к пространству режимов, что отражает степень оптимальности данной среды для заселяющих ее информационных систем. Вторая – это наличие в данной среде факторов типа помех, негативно действующих на информационные системы и предъявляющих к ним требования той или иной помехоустойчивости. Третья – это ресурсоемкость среды обитания, которую можно выразить отношением имеющихся в ней ресурсов R к тому количеству ресурсов r, которое требуется для осуществления одного цикла целенаправленного действия: Rr-1 = p. Очевидно, что в случае р < 1 целенаправленное действие, начавшись, не сможет завершиться. В случае р = 1 оно может осуществиться лишь один раз. Только в случае р›› 1 среда обитания будет успешно «разрабатываться» информационными системами, все более «засоряющими» ее при этом побочными продуктами своей деятельности. В какой мере среда обитания сможет «справляться» с этим засорением, будет определяться четвертой ее характеристикой – ее кондиционирующей мощностью. Наконец, пятая характеристика – объем среды обитания – будет определять, какое предельное количество информационных систем она сможет «вместить в себя» без ущерба для их дееспособности. Очевидно, что объем среды обитания определяется как ее собственными параметрами, так и параметрами «жизненного пространства», требующегося для нормальной работы одной информационной системы. К этим характеристикам надо добавить еще одну, интегральную характеристику среды обитания, которую можно назвать ее надежностью. Это – способность сохранять значения своих параметров при постоянном давлении различных деформирующих факторов, в нашем случае – продолжающемся потреблении ресурсов и поступлении побочных продуктов w. Ввиду особой важности этого параметра, т.е. надежности, рассмотрим его более внимательно. Продуктивность, кондиционирующая мощность и надежность Независимо от того, циклической или непрерывной, постоянной или изменяющейся во времени будет деятельность оператора Q1, попавшего в данную среду обитания, эта деятельность неизбежно будет сопровождаться потреблением ресурсов R - источников энергии и субстрата окружающей среды 5 и поступлением в нее w побочных продуктов или «отходов производства» в виде тепла, различных химических соединений и пр. Для упрощения ситуации положим, что осуществление события цели Z само по себе никак не влияет на среду обитания. Тогда можно записать:
где i = 0, 1,... п есть номер очередного цикла работы оператора или время, прошедшее от начала его функционирования. Из этого следует, что для того, чтобы среда обитания оставалась пригодной для существования в ней данного оператора (или его копий), она должна постоянно поставлять ресурсы R и справляться с побочным продуктом w независимо от величины i, так чтобы Si ≈ S0
Заметим, что R и w не являются независимыми переменными. Ведь как Z, так и w образуются из исходных ресурсов R, так что можно ввести параметр
где rz + rw = r, а величина а может быть названа «коэффициентом полезного использования ресурсов». Так как w всегда сопутствуют Z, то а всегда и неизменно меньше единицы (0 < а< 1). Нетрудно видеть, что а –очень важная, фундаментальнейшая характеристика любого целенаправленного действия: чем меньше а, тем большая доля ресурсов R «идет в отход», засоряя среду обитания: w =fR (1 - а). Ресурсы R, по отношению к содержащей их среде, могут быть, вообще говоря, двух типов – невозобновляемыми и возобновляемыми. Мы будем рассматривать возобновляемые ресурсы, как наиболее общий случай. Тогда способность среды обитания производить тот субстрат и те источники энергии, которые слагают ресурсы R, будем называть продуктивностью этой среды. В случае, когда продуктивность (реальная или потенциальная) полностью компенсирует расход ресурсов в ходе функционирования информационных систем, такие ресурсы можно условно считать неисчерпаемыми. Если же продуктивность существенно ниже скорости потребления ресурсов, то практически мы будем иметь дело с невозобновляемыми ресурсами. В обоих случаях, однако, характер ресурсов не будет влиять на скорость поступления в среду обитания побочных продуктов w, определяемую лишь «ресурсоемкостью» целенаправленного действия, величиной w и собственным временем данной информационной системы. Накоплению в среде побочного продукта или загрязнений противостоит кондиционирующая мощность этой среды, или ее способность разбавлять, захоранивать, разрушать, нейтрализовывать или утилизировать компоненты побочного продукта. Поэтому реальное загрязнение среды побочными продуктами определяется разностью между скоростью их поступления и скоростью кондиционирования (или самоочистки) среды обитания. Очевидно, что только в том случае, когда кондиционирующая мощность превышает скорость накопления побочных продуктов, среда практически не подвергается их действию. Надежностью среды обитания будем называть ее способность сохранять характеристические значения продуктивности θ и кондиционирующей мощности ø при приближении скорости расходования ресурсов и скорости поступления побочных продуктов к ø (т.е. при dR/dt→θ и dw/dt → ø). Действительно, можно представить себе, что значения θ и ø по мере возрастания dR/ dt и dw/dt могут: не изменяться, возрастать или уменьшаться. Во всех трех случаях, однако, должны существовать такие предельные значения θ0 и ø0, определяемые соотношениями
которые мы и будем называть характеристическими. Заметим, что θ0 и ø0, вообще говоря, могут зависеть от разных случайных ситуаций, не связанных непосредственно с работой информационных систем, но чем надежнее среда обитания s, тем меньше будет выражена такая зависимость. Очевидно, что надежность среды обитания обусловливается особенностями функционирования ее компонентов. Проблема эта будет еще рассматриваться ниже. Сейчас лишь заметим, что в самом общем случае надежность тем выше, чем из большего числа компонентов эта среда слагается. Чем больше размерность среды обитания, тем стабильнее она должна функционировать и в качестве продуцента, и в качестве кондиционера, в том числе и при увеличении нагрузок на эти функции. Заметим, что хотя продуктивность и кондиционирующая мощность обеспечиваются в среде обитания как бы независимо друг от друга, обе эти функции связаны между собой через ее (среды) надежность. Подавление кондиционирующей мощности, уменьшая надежность среды обитания, будет, как правило, приводить к уменьшению ее продуктивности. Поэтому все три фундаментальных параметра среды обитания – ее продуктивность, кондиционирующая мощность и надежность тесно связаны между собой и имеют тем большие значения, чем больше многокомпонентность (или размерность) этой среды. Величина же надежности среды обитания определяет, в конечном счете, ту максимально-допустимую нагрузку на ее продуктивность и кондиционирующую мощность, которую эта среда может выдержать, не претерпевая необратимых трансформаций. Побочный продукт и его воздействие на среду обитания Из сказанного выше как будто следует вывод, что на «производство» побочного продукта w расходуется (I - rz) доля ресурсов, требующихся для осуществления целенаправленного действия, и (I - КПДQ) энергии, для этого используемой. Однако это лишь нижняя оценка затрат, идущих на выработку w. Если учесть, что конечной целью деятельности любой информационной системы является воспроизводство кодирующей ее информации, то окажется, что «полезно используемые» ресурсы, в том числе источники энергии, почти целиком расходуются на производство неинформационных компонентов таких систем, т.е. слагающих их операторов и физических носителей информации, а не на информацию как таковую, – ведь информация нематериальна, и для ее воспроизводства никаких вещественных или энергетических затрат не требуется. Но любой материальный объект обречен на гибель; эта судьба ожидает и все операторы, и включающие их информационные системы. Погибая и разрушаясь, они также «загрязняют» среду, в которой ранее функционировали, чужеродными для нее компонентами.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|