Целенаправленное действие и его компоненты 16 глава
_ Энергоемкость технологий Воспроизведения каждого живого объекта (бактериальной клетки, растения, животного) обеспечиваются должными направлениями потоков требующихся для этого вещества и энергии. Направленность этих потоков и избирательность по отношению к исходному материалу определяются генетической информацией, кодирующей данные объекты, а само движение – энергозатратами, восходящими для подавляющего большинства живых систем к единому источнику – Солнцу. Если по отношению к веществу можно говорить о круговороте, то по отношению к энергии – лишь о потоке, с постоянной диссипацией «отработанной» энергии в тепло. Воспроизводство каждого организма может быть охарактеризовано довольно константными значениями количества требуемого для этого вещества и величиной энергозатрат. Количество вещества и энергии, потребляемое каждым индивидом от зачатия до смерти (клеткой – от деления до деления), можно выразить по отношению к массе данного объема (максимальной в его онтогенезе). Величина эта, постоянная для организмов одного и того же вида, не зависит от численности популяций, в которые он входит, и от продолжительности существования этого вида. В человеческой же популяции такое постоянство относится только к потребляемым людьми продуктам питания. Однако расход всего вещества и всей энергии, приходящихся на одного человека, неуклонно возрастает с увеличением численности популяций. Сюда относятся расходы вещества и энергии на одежду, обогрев, места жительства, транспорт и связь, на изготовление и использование орудий труда, оружия, наконец, предметов развлечения, роскоши и пр. Это плата за техногенез, или, точнее, это и есть мера техногенеза, цена продолжающегося роста численности человеческой популяции. Это – расход на те техногенные компоненты человеческой экосистемы, которые постепенно заменяют собой его исходное биогенное окружение.
Общий расход вещества и энергии, приходящихся на воспроизведение одной человеческой жизни, можно выразить в энергоэквивалентах и отнести к энергоэквиваленту расхода на одно только питание. Так мы получим меру технологического обеспечения воспроизводства человеческих популяций. Этот показатель неуклонно возрастает с увеличением численности людей, что особенно ярко выражено в последние сотни лет и пока не имеет тенденции к стабилизации. Можно думать, что даже переход на полную автотрофность не положит предела возрастанию этой величины, которую можно рассматривать также как энергоэквивалент человеческой экспансии. Рост технологических энергозатрат происходит как за счет роста численности отдельных технологических объектов, так и за счет роста энергоемкости объектов, все вновь и вновь вводимых в производственную практику; это - и экстенсивный, и интенсивный рост. Повышение энергоэквивалента человеческой жизни с увеличением численности человеческой популяции обусловливается обоими этими факторами, даже при стабилизации численности населения, как, например, в современной Европе. Стабилизация численности людей не положит предела этому процессу. Как мы помним, w всегда больше нуля. Отсюда следует, что с общим ростом энергоэквивалента человеческой экспансии будет неизбежно возрастать (в расчете и на одного человека, и на все человечество) выход побочных продуктов техногенеза. Это –дополнительная цена, которой расплачивается природа за развитие порожденного ею человечества. Цена эта, как правило, имеет форму экологических катастроф. Техногенез и экологические катастрофы
Экологические катастрофы, как природные, так и антропогенные, в аспекте их воздействия на биосферу в целом есть столь концентрированные в пространстве и во времени изменения ее статуса, что они (эти изменения) не могут быть компенсированы кондиционирующей активностью среды или корректирующей деятельностью человека. В этом аспекте все техногенные катастрофы можно подразделить на экологические и технологические (или, точнее, технические), причем последние, как правило, влекут за собой и экологические последствия. Особенность всех катастроф та, что относительно небольшие (в энергетическом эквиваленте) причины могут приводить к совершенно несопоставимым, намного превышающим их последствиям: нарушения равновесия в подвергающихся катастрофическим воздействиям экосистемах могут вызывать бурные и продолжительные пертурбации, с последующим установлением равновесия совершенно иного рода или даже разрушением всех затронутых катастрофой экосистем. Крайним вариантом таких последствий может быть изменение параметров, характеризующих надежность биосферы. Особо важное значение в аспекте техногенеза имеет связь между энергоемкостью технологических объектов, с одной стороны, и вероятностью и величиной экологических последствий катастроф, с другой. Можно полагать, что с увеличением энергоемкости технических систем вероятность отказов, завершающихся катастрофами, будет возрастать пропорционально, а величина (в энергоэквиваленте) экологических последствий этих катастроф – как степенная
Рис. 5. Схема зависимости энергоемкости полезного продукта Ez и экологических катастроф Ew от энергоемкости технологий E
Это налагает особо жесткие требования на обеспечение надежности технологических систем с увеличением их энергоемкости, что будет, очевидно, все более их удорожать. Но сколь бы ни удалось уменьшить вероятность возникновения катастроф (с повышением надежности технологических систем), свести ее до нуля никогда не удастся. С ростом энергоемкости технологий степенная зависимость от этой величины экологических последствий катастроф все равно рано или поздно даст себя знать (печальным примером чему может служить авария на Чернобыльской АЭС).
Одно из главных следствий сформулированной выше закономерности целесообразность замены больших по энергоемкости технологий (т.е. таких, у которых энергоемкость превосходит критические значения Е0) эквивалентным (по выработке полезного продукта) числом малых технологий (энергоемкость которых ниже критического значения). В этом случае даже сумма катастрофических последствий всех таких малых технологий будет значительно меньше таковых от больших технологий. Это следует иметь в виду всегда, когда только возможно. Технологии с энергоемкостью выше критической должны быть допустимы лишь в случаях абсолютной жизненной необходимости. При этом следует учитывать все возможные разрушительные последствия катастрофических ситуаций, которые могут реализоваться хотя и с очень малой вероятностью (при высокой надежности соответствующих технологий), но с вероятностью, всегда превышающей нуль. Еще раз следует подчеркнуть, что процесс ноогенеза, приводящий к постепенной, все более полной замене биосферы техносферой, всегда и неизбежно связан со все возрастающей опасностью техногенных экологических катастроф, носящих все более глобальный характер и, в предельном случае, угрожающих существованию не только всего человечества, но и биосферы в целом. Стратегия выживания человечества Стратегии выживания человека как биологического объекта должны быть подчинены тем же закономерностям выхода из критических ситуаций, которые были рассмотрены выше (см. главу 3). Коренное отличие от других биологических объектов здесь вот какое. В случае других живых организмов давление жизни L > 1 призвано противостоять давлению внешней среды ценой гибели подавляющего большинства все вновь возникающего потомства, что и обеспечивает стабильность численности биологических популяций. У человека же биологически обусловленное превышение рождаемости над смертностью реализуется не столько в противостоянии помехам внешней среды (что обеспечивается технологическими приемами), сколько в постоянном возрастании численности человечества. Здесь, следовательно, неравенство L > 1 обеспечивает не стабильность популяции, а, напротив, дестабилизацию ее взаимоотношений с природной средой обитания.
Попытаемся очень коротко обрисовать общую картину ноо-и техногенеза с учетом роли побочных продуктов w и, в частности, возможных катастроф и проэкстраполируем эту картину на будущее. В результате мы получим картину постепенного перехода человечества к абсолютной автотрофности, с глобальной заменой биологических компонентов биосферы, – а затем и всей биосферы в целом – их технологическими аналогами, с сохранением отдельных природных экосистем лишь по эстетическим и научным соображениям. Побочные продукты w глобальных технологий, как мы видели, могут быть двух типов – постоянно образующиеся техногенные загрязнения, не кондиционируемые биосферой, и техногенные экологические катастрофы. Постоянно образующиеся техногенные побочные продукты, по-видимому, будут все более сводиться до минимума по мере развития безотходных предприятий и «техноценозов», представляющих собой системы производств, максимально взаимно утилизирующих побочные продукты друг друга. Взамен этого фактора, лимитирующего развитие любых информационных систем, все большую роль будет приобретать лимитирующий фактор, специфический для техногенного периода развития информации, – катастрофы глобального характера. Сейчас прослеживается лишь один путь сведения этой опасности до минимума – возврат к экстенсивному развитию на новом уровне, когда общий рост численности людей будет увеличиваться за счет числа, а не энергоемкости, дискретных автотрофных техногенных экосистем. Проблема сохранения внешней среды в настоящее время является непременным условием нормального существования людей на нашей планете и уже давно волнует человечество. К настоящему времени выявились два наиболее разработанных подхода к решению этой проблемы, предложенные Римским клубом и Н.Н.Моисеевым [17]. Подход Римского клуба базируется на концепции стабилизации общей численности человеческой популяции и как сопутствующей мере – стабилизации техногенеза. Недавно предложен, пожалуй, наиболее жесткий вариант этой концепции, предусматривающий почти десятикратное (по сравнению с существующим) сокращение населения Земного шара путем строгого правительственного контроля за рождаемостью [18]. На основании сказанного выше (см. главу 2) можно, однако, думать, что стабилизация численности людей (L=1) и тем более ее уменьшение (L < 1), если это, паче чаяния, и удастся осуществить, завершится общей деградацией рода человеческого.
Подход Н. Н. Моисеева основывается на концепции «путешественники в одной лодке» и сводится к поискам компромиссов между продолжающимися ноо- и техногенезом, с одной стороны, и сохранением стабильности биосферы, с другой. Это, так сказать, коэволюция человека и биосферы. Но, к сожалению, с увеличением численности человеческой популяции техногенез будет неизменно нарушать стабильность биосферы, если не за счет возрастания выхода некондиционируемых биосферой его побочных продуктов, то вследствие периодических техногенных экологических катастроф. Ведь природная биомасса может обеспечить существование лишь определенной биомассы людей, и превышение этой критической величины (что, по-видимому, уже давно произошло) неизбежно вызовет ее (биосферы) разрушение. В противовес этим двум подходам (которые, однако, чрезвычайно перспективны или даже необходимы в отдельных локальных конкретных ситуациях) можно предложить к рассмотрению третий подход, основанный на изложенных выше соображениях и представляющий собой осознанную технологизацию биосферы. В основе этого подхода – разумная все возрастающая замена природных компонентов биосферы их технологическими аналогами. Бурное развитие логической информации, рост наших знаний о структуре и закономерностях функционирования биосферы, а также параллельный рост технических возможностей делают эту цель вполне достижимой. Разрабатываемые ныне в ряде стран безотходные производства и замкнутые системы жизнеобеспечения космического, подводного или иного назначения – вот первые прообразы будущей ноогенной техносферы. Правда, в этих футурологических рассуждениях, как и во всех им подобных, есть один очень серьезный, но неизбежный дефект: все они представляют собой, по существу, экстраполяцию в будущее того, что известно нам в данное время. Такой подход, однако, не учитывает того фундаментального свойства информации, которое мы назвали полипотентностью (см. главу 2). С формированием все новых пространств режимов, с возникновением все новых экологических (а в будущем и технологических) ниш свойство полипотентности может проявляться самым непредвидимым образом, вплоть до таких вариантов, проигрываемых некоторыми фантастами, как самостоятельное существование техногенных самовоспроизводящихся систем, не нуждающихся в человеке. Но это равносильно полному вымиранию человечества на очередном витке автогенеза информации, и с наших, гуманоидных, позиций может представлять интерес лишь с одной целью – для решения вопроса о том, как такую ситуацию можно предотвратить. Литература 1. Вернадский В. И. Биосфера и ноосфера. М., «Наука», 1989. 2. Будыкр М. И., Ронов А. Б., Яншин А. А. История атмосферы. Л., Гидрометеоиздат, 1985. 3. Камшилов М. М. Эволюция биосферы. М., «Наука», 1979. 4. Печуркин Н. С. Энергия и жизнь. Новосибирск, «Наука», 1988. 5. Заварзин Г. А. Бактерии и состав атмосферы. М., «Наука», 1984. 6. Тимофеев-Ресовский Н. В., Воронцов Н. Н., Яблоков А. В. Краткий очерк теории эволюции. М., «Наука», 1969. 7. Севастьянов Б. А. Ветвящиеся процессы. М., Наука, 1971. 8. Корогодин В. И., Кутлахмедов Ю. А., Файси Ч. Природа, 1991, № 3, С. 74-82. 9. Одум Ю. Основы экологии. М., «Мир», 1975. 10. Четвериков С. С. Журн. экспер. биол., 1926. Сер. А, т. 2, в. 1, С. 4. 11. Свирежев Ю. М., Логофет Д. О. Устойчивость биологических сообществ. М., «Наука», 1978. 12. Алексеев В. П. Становление человека. М., Изд. полит, лит., 1984. 13. Поршнев Б. Ф. О начале человеческой истории (Проблемы палеопсихологии). М., «Наука», 1976. 14. Моисеев Н. Н. Алгоритмы развития. М., «Наука», 1987. 15. Лем С. Сумма технологии. М., «Мир», 1968. 16. Вернадский В. И. Автотрофность человечества. В кн.: Проблемы биогеохимии. Труды биогеохимической лаборатории. Вып. XVI, М., «Наука», 1980, С. 228. 17. Моисеев Н. Н. Человек, среда, общество. М., «Наука», 1982. 18. Горшков В. Г. Физические и биологические основы устойчивости жизни. М., Изд. ВИНИТИ, 1995. Глава седьмая ПРЕДВИДИМО ЛИ БУДУЩЕЕ? Информация и феномен жизни Выше мы постарались получить ответы на вопросы, поставленные в самом начале этой работы: чем отличается живое от неживого? и чем отличается человек от других живых организмов? Коротко ответы эти можно сформулировать так. Мы увидели, что разница между живыми и неживыми объектами размыта. Ярко выраженные свойства живых объектов, такие, как целенаправленность действий, гомеостаз, наличие обратных связей, есть в зачатке в информационных системах на более ранних этапах эволюционного развития (см. гл. 1, 2). Но здесь мы бы хотели подчеркнуть, что есть ступень эволюции, отделяющая живую Природу. Это гиперциклы Эйгена (см. гл. 1, 2 и 5). Они сформировали на основе самовоспроизводящихся единиц сеть каталитических и автокаталитических реакций и образовали аппарат трансляции. Это открыло путь к развитию функции гетерокатализа. В этот момент мы уже можем говорить о генетике живой клетки. Генетика живой клетки подразумевает: 1. Обособление на специальных носителях генетической информации, которое позволило отделить управляющую (информационную) часть клетки от соматической (динамической) (см. 2. Развитый гомеостаз, включающий прямые, обратные положительные и отрицательные связи (см. главы 2, 3, 5). 3. Четкая сигнальная связь управления генетического аппарата клетки соматической частью (гомеостазом) для того, чтобы выжить в условиях внешней среды. В обособлении этих двух функций управления и исполнения заложено ярко выраженное целеполагание активности клетки. 4. Образование алгоритма новых генетических связей клетки, комплементирующих с появлением новых генетических критериев дарвиновского отбора. Вышеперечисленные особенности живых объектов обусловлены их организацией, особенности которой задаются кодирующей эту организацию информацией. Все живые объекты, по существу, – это информационные системы, которые, попадая в подходящие условия, могут обеспечивать воспроизведение кодирующей их информации. Жизнь, таким образом, – это форма существования информации и кодируемых ею операторов, обеспечивающих возможность воспроизведения этой информации в подходящих условиях внешней среды. Цель жизнедеятельности всех живых организмов – это воспроизведение кодирующей их информации. Но информация может не только обеспечивать (посредством операторов) собственное воспроизведение, но способна также развиваться, эволюционировать. В основе эволюции информации лежат два принципа: принцип автогенеза и принцип соответствия. Принцип автогенеза состоит в том, что любая информационная система, осуществляя целенаправленные действия, так изменяет среду своего обитания, что это может приводить к возникновению новых условий, потенциально пригодных для «разработки» другими информационными системами, в том числе случайно образующимися благодаря изменчивости, присущей любой информации. Принцип соответствия состоит в том, что, попадая в новые условия, любая информационная система – и, прежде всего, кодирующая ее информация – или погибает, или видоизменяется в направлении максимального соответствия этим условиям. Усложнение условий, потенциально пригодных для существования информационных систем, автоматически влечет за собой усложнение этих систем, в основе чего лежит увеличение количества кодирующей их информации и ее семантическая «настройка». В ходе эволюции жизни на Земле возникали информационные системы все большей степени сложности. В первый период эволюции их развитие базировалось только на увеличении количества кодирующей их генетической информации, а информационные системы – живые организмы –представляли собой истинные «неделимые» индивидуумы, когда информация и ее операторы неразрывно связаны друг с другом и не имеют независимого существования. Это – период биологической эволюции, приведшей в свое время к формированию биосферы. С возникновением поведенческой информации, когда деятельность организмов, помимо их генотипа, стала определяться еще и поведенческими реакциями, связывающими в единое целое популяции обладающих ими организмов, наметился переход к информационным системам другого рода, когда отдельные индивиды, информация, их объединяющая, и кодируемые ею операторы стали приобретать пространственно независимое существование. Материальной основой, в форме которой теперь развивалась новая, логическая информация, стала речь, язык, слово. Возникли человеческие сообщества. Таким образом, человек – это биологическая база существования нового вида информационных систем, обеспечивающих воспроизведение и эволюцию логической информации. Владение словом, со всеми вытекающими отсюда последствиями, и есть главное, принципиальное отличие человека от всех других живых организмов. Таким образом, феномен жизни и ее эволюцию можно интерпретировать как строго преемственный процесс возникновения и развития информации, постепенно, по мере исчерпания емкости своих физических носителей, приобретавшей все новые формы: генетической, поведенческой и логической. На третьей стадии развития, в форме логической информации, последняя начала принимать все более глобальный характер, объединяя в единую информационную систему не только отдельных людей внутри человеческих сообществ, но и все человеческие сообщества, всю биосферу в целом. Технологии – это, по сути дела, реализация, материализация логической информации в операторы, специфические для информационных систем второго рода, а идеи – религиозные, нравственные, этические, политические и научные – осознаваемые человеческими сообществами фрагменты единой логической информации, спаивающие ее в глобальную информационную систему. С этой точки зрения все формы социальной конкуренции, все виды идеологической борьбы и все войны не что иное, как борьба между собой фрагментов логической информации, борьба, в ходе которой выкристаллизовываются новые, наиболее жизнеспособные в данных условиях ее варианты. Войны и революции, таким образом, – это борьба за существование разных видов информации, в которой отдельные люди, их сообщества и целые государства выступают лишь в роли ее «орудий». Единая природа всех этих видов информации выражается не только в их генеалогической преемственности, но и в том, что любой информации присущи все характерные для нее свойства (см. главу 2), а именно: фиксируемость, инвариантность, размножаемость, мультипликативность, изменчивость, бренность, действенность и полипотентность. Полипотентность информации, в свою очередь, определяет такую важнейшую особенность ее развития, которую мы назвали принципом поризма. Можно думать, что эти же свойства будут присущи и тем новым видам информации, возникновение которых в будущем нельзя исключить, но о которых мы сегодня еще ничего не знаем. Этим процесс эволюции коренным образом отличается от селекции животных и растений, проводимой человеком, когда в относительно небольшие сроки удается получить живые организмы, обладающие именно теми особенностями, которые были заранее задуманы селекционером. Еще раз о полипотентности информации и принципе поризма Все, что известно нам о динамике информации, или, другими словами, о развитии информационных систем, отличается одной особенностью, давно подмеченной специалистами – эволюционистами: возникновение различных видов живых организмов, занимающих самые разные экологические ниши, можно объяснить постериори, но невозможно предсказать априори [1]. В рамках пространства логических возможностей [2] здесь можно предсказывать любые варианты, но нет никаких оснований заранее определить, какие из них будут реализованы, а какие – нет. Аналогическая ситуация наблюдается в мире идей [3]. На примере истории технологий [4] можно видеть, что сходные производственные задачи могут решаться зачастую разными способами, а заранее нельзя предугадать, какое из этих решений окажется наиболее оптимальным. Это же относится и к религиозным идеям, философским, политическим и другим. В основе этого интереснейшего феномена, практически полностью изгоняющего детерминизм из царства живой природы, лежит, по-видимому, то замечательное свойство информации, которое мы назвали полипотентностью. Напомним, что полипотентность – это возможность использовать одну и ту же информацию с одинаковыми или разными вероятностями для достижения разных целей. Другая сторона полипотентности – возможность использовать в одной и той же ситуации, для достижения одной и той же цели, самые разные информации. Отсюда следует, во-первых, что ценность информации всегда конкретна и в общем случае может быть задана только в форме распределения на пространстве «ситуация-цель»; а во-вторых, что такое распределение никогда не может быть полным, ибо априори невозможно перечислить все ситуации и все цели, которые могут быть достигнуты с помощью данной информации. Отсюда, кстати, следует вывод, что никогда нельзя быть уверенными, что некая данная информация наиболее подходящая для достижения данной цели при данной ситуации. Одной и той же цели всегда можно достигать разными способами. Мы уже отмечали два интереснейших проявления свойства полипотентности: в виде бифуркаций и в виде принципа поризма. Бифуркации – это принципиальная непредсказуемость путей эволюции данной информации, имеющей несколько возможностей для своего дальнейшего развития, что выражается в существовании нескольких доступных для нее потенциальных экологических ниш; невозможно также априори решить, какая именно информация произведет «захват» некоторой потенциальной экологической ниши, доступной для заселения множеством разных информационных систем. Векторизованность, определенная направленность, присуща динамике информации лишь в одной и той же зоне обитания: здесь ее развитие будет идти в направлении повышения ее эффективности А = С/В. В то же время множество возможных равноценных решений задач, которые ставят перед информацией новые потенциальные экологические ниши, не только не исключает, но даже предполагает существование среди этих решений таких, которые окажутся далеко не равноценными по отношению к другим возможным новым ситуациям. Принципиальная возможность таких решений, которые, будучи в равной мере эффективными, наряду с другими решениями, в некотором данном информационном поле, окажутся значительно более эффективными, по сравнению с другими, в информационных полях большей размерности, и есть принцип поризма. Мы уже иллюстрировали проявления принципа поризма на уровне эволюции таксонов, и на уровне эволюции биосферы в целом, и на уровне развития идей (см. главу 4). Заметим, что если бифуркации встречаются и вне живой природы [5], то принцип поризма работает лишь в царстве информации. Можно полагать, что принцип поризма – один из кардинальных принципов, лежащих в основе прогрессивной эволюции информации и информационных систем. Непредвидимость будущего Теперь, пожалуй, мы подготовлены для того, чтобы сформулировать еще один принцип, лежащий в основе эволюции информационных систем, – принцип непредвидимости будущего. Поясним это утверждение более обстоятельно. Два вопроса относительно будущего развития человечества представляют основной интерес. Первый вопрос: что ожидает человеческую цивилизацию в связи с технологизацией биосферы? И второй вопрос: является ли логическая информация высшей и завершающей формой развития информации или возможны какие-либо новые ее формы, кодирующие новые типы информационных систем? Попробуем рассмотреть эти вопросы в меру нашего разумения. Вначале – относительно возможного будущего биосферы и человечества. Мы уже касались некоторых итогов относящихся сюда футурологических построений (см. главу 6). Все они опираются на наши знания о современном состоянии экологии и на их экстраполяцию в обозримое будущее. Решающий вклад в такой анализ сделал Римский клуб. По его прогнозам, при сохранении нынешних темпов техногенеза в недалеком будущем неизбежно исчерпание природных ресурсов жизнеобеспечения человека, сопровождающееся необратимым повреждением биосферы и, как естественное следствие, – гибель цивилизации. Отсюда вывод: сохранение человечества возможно лишь при сохранении технологий и численности населения на современном уровне. Учет того обстоятельства, что даже ныне используемые технологии губительно влияют на биосферу, приводит к более радикальным рекомендациям типа снижения общей численности населения Земли примерно на порядок путем глобального регулирования рождаемости и соответствующего уменьшения техногенной нагрузки на биосферу [6J. Можно думать, однако, что рекомендации по стабилизации и уменьшению народонаселения Земли и, соответственно, торможению техногенеза нереалистичны и на практике нереализуемы. Стабилизация населения, во-первых, противоречит биологической природе человека с ее требованием превышения рождаемости над смертностью (L > 1), а во-вторых, этическим нормам, направленным против вмешательства государства в частную жизнь людей. Стабилизация техногенеза также противоречит основным принципам автогенеза информации с неизбежной апробацией жизнеспособности постоянно возникающих новых ее вариантов через дееспособность кодируемых ею операторов, что столь же неизбежно будет сопровождаться возникновением все новых побочных продуктов с непредсказуемыми последствиями их влияния как на биосферу, так и на техногенез в целом. Иными словами, стабилизирующий контроль здесь в принципе невозможен, а попытки его осуществить могут приводить к самым печальным последствиям (см., напр., [7]). Значительно эвристичнее представляются подходы, основанные не на экстраполяциях, а на знании закономерностей, присущих техногенезу. Две главные тенденции здесь мы уже отмечали. Во-первых, это – консолидирующая функция информации по отношению к человеческим сообществам, ярко проявляющаяся сейчас в формировании глобальной информационной сети, а также быстро идущего экономического и политического объединения человечества в единую хозяйственную суперсистему. Это, по существу, формирование глобального информационного пула и глобальных кодируемых им технологий. Параллельно и неизбежно формируется «экологическая ниша», «обживаемая» этой информационной суперсистемой, а ее автогенез, в пределах этой экологической ниши, направлен на повышение эффективности информации – и, следовательно, суммарного КПД всего технологического комплекса. Под давлением локальных обстоятельств создаются все новые источники энергии, на смену энергоемким технологиям приходят технологии «наукоемкие», на смену очистным сооружениям, защищающим от загрязнения окружающую среду, – техноценозы, использующие в качестве ресурсов «побочные продукты» друг друга, наподобие трофическим сообществам в экосистемах. Исчерпание природных ресурсов и обострение экологического кризиса заставляют принимать меры, направленные на сохранение природной среды обитания, – меры как локального характера, так и глобальные, достигаемые благодаря международным соглашениям [7].
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|