Обработка результатов
II 1. 3 квадрата 2. 3 черные фигуры 3. Все черные фигуры 4. Все черные фигуры на белом фоне - III 1. Квадраты 2. Черные фигуры 3. 3 фигуры 4. Фигуры на белом фоне 5. 3 квадрата 6. 3 черные фигуры 7. Черные фигуры на белом фоне 8. Квадраты на белом фоне 9. 3 фигуры на белом фоне 10. Черные квадраты 12. 3 квадрата на белом фоне 13. Черные квадраты на белом фоне 14. 3 черные фигуры на белом фоне Ввиду трудоемкости вычислений и значительного времени, которого требует проведение данного опыта, в особенности с предъявлением для распознавания испытуемому набора, состоящего из 14 гипотез, последний приводится здесь для иллюстрации; студенты могут ограничиться предъявлением лишь первых двух наборов гипотез или не доводить поиск в случае предъявления 14 гипотез до оптимального способа. Подготовка экспериментального материала включает также следующий этап: используя таблицу случайных чисел, экспериментатор составляет последовательность предъявления испытуемым каждой гипотезы (в случайном порядке); каждой соответствует определенный набор объектов (20 предъявлений к I и II набору и 28 предъявлений к III набору). В случае если за такое количество времени испытуемым не находится оптимальный способ решения данной задачи, экспериментатор начинает задавать гипотезы снова в том же порядке. Испытуемый не должен знать, какие гипотезы и сколько раз могут быть предъявлены ему для распознавания. Отработка задания Опыт проводится с одним испытуемым первоначально с набором из 2 гипотез, а затем, после перехода испытуемого в этом случае к оптимальному поиску, экспериментатор без предупреждения переходит к предъявлению для распознавания набора из 4 гипотез. Весь опыт продолжается до тех пор, пока испытуемый не начинает стабильно, в течение ряда задач (6-8), определять в каждом'случае требуемую гипотезу, используя оптимальную стратегию поиска. Пробы, делаемые испытуемым в процессе опыта, регистрируются на специальном бланке, каждая клетка которого соответствует определенному объекту (карточке) из всего набора, предлагаемого испытуемому. Экспериментатор отмечает номер сделанного испытуемым выбора на бланке. Каждый такой бланк является протоколом решения испытуемым каждой отдельной задачи — распознавания задуманной группы объектов в каждом конкретном случае. На бланке-протоколе обязательно фиксируются номера задач. Образец бланка с зафиксированным ходом опыта дан в Приложении.
В каждой части опыта участвуют экспериментатор и один испытуемый. Вся группа испытуемых делится на две подгруппы — для участия в первой и второй частях опыта. Инструкция испытуемому: «Перед вами расположен набор объектов (карточек), характеризующихся различными признаками. Экспериментатор задумывает некоторую группу этих объектов. Вам предстоит определить, что это за группа. Для этого Вы можете указать на любой объект и спросить экспериментатора, входит ли он в задуманную группу карточек. Подобные выборы объектов осуществляйте до тех пор, пока Вам не станет ясно, какую группу объектов задумал экспериментатор. Вы должны назвать эту группу. Если ответ экспериментатора окажется отрицательным, продолжайте поиск. Старайтесь при нахождении требуемой группы делать как можно меньше проб отдельных объектов». Последнее требование инструкции повторяется часто, перед решением почти каждой задачи, пока испытуемый не перейдет к оптимальному поиску с минимальным числом проб. Обработка результатов Для получения данных в целях ответа на первый вопрос требуется подсчитать общее количество решенных задач, предшествующее устойчивому осуществлению испытуемыми оптимального поиска в случае предъявления первого и второго набора гипотез.
Как уже указывалось, оптимальным способом поиска для I набора гипотез будет опробование любой карточки с вероятностью получения положительного ответа '/,. Для II набора гипотез необходимо опробовать уже две карточки: первую — с вероятностью получения ответа «да» — '/2, и вторую, вероятность получения ответа «да» которой будет '/2 после осуществления первого выбора. 98 В табл. 1 показано распределение вероятностей получения положительного ответа для I набора гипотез при расположении карточек первой части опыта. Для получения данных по второму вопросу требуется проследить, каким образом испытуемый осуществляет поиск в каждой конкретной задаче, для чего требуется подсчитать количество информации, получаемой им при осуществлении каждого выбора. При предъявлении I набора гипотез это делается просто, так как из приведенных выше формул ясно, какое количество информации получает испытуемый в каждом выборе. Экспериментатор должен фиксировать, на каком этапе испытуемым получена требуемая информация 1 дв. ед. и как долго продолжается после этого последующий поиск. При каждом выборе в этом случае испытуемый будет получать нулевую информацию. При предъявлении II набора гипотез дело несколько усложняется, так как после первых выборов по-разному будет изменяться статистическая характеристика обследуемого поля, и экспериментатор должен сам научиться ее определять. Покажем на примере, как это делается. Предположим, что испытуемый первым назвал объект «3 синих круга на желтом фоне». Из табл. 2 видно, что вероятность получения положительного ответа при выборе этой карточки равна О, и полученная информация, следовательно, тоже равна 0; статистическая характеристика поля остается неизменной. Допустим теперь, что испытуемый назвал карточку «3 черных квадрата на белом фоне». Вероятность получения положительного ответа в этом случае равна 1 и, следовательно, полученная информация также равна 0 при неизменной статистической характеристике поля. Возьмем, наконец, случай первого выбора испытуемым карточки, характеризующейся некоторой средней вероятностью получения положительного ответа о принадлежности ее к задуманной группе, например карточки «1 черный круг на белом фоне». Из табл. 2 видно, что вероятность
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|