Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

1.4 Особенности энергетического обеспечения в беге на 400 метров




 

В определении результативности бегуна на 400 м выступают показатели общих энергетических возможностей спортсмена. Результаты улучшаются за счет роста максимальной скорости спринтерской и специальной выносливости. С позиции внутренних процессов эффективность в беге на 400 м зависит от процессов, происходящих внутри организма в анаэробных условиях [18].

Воспитывая специальную выносливость в работе субмаксимальной и большой интенсивности, кроме продолжительной работы широко используют повторное преодоление отрезков, сильно укороченных по сравнению с избранной соревновательной дистанцией. Выбор относительно коротких отрезков обусловлен стремлением приучить занимающегося к длительному передвижению на более высоких скоростях, чем он в состоянии это сделать вначале на дистанции в целом. Поскольку однократное прохождение короткой дистанции окажет слишком малое воздействие на организм, её проходят в каждом отдельном занятии многократно, добиваясь большого тренировочного эффекта [20].

Энергообеспечение бега на дистанции 100 и 200 м (в зоне максимальной мощности) происходит почти полностью за счёт анаэробных процессов. Время бега на этих дистанциях слишком мало, чтобы обладающие инерционностью системы дыхания и кровообращения обеспечили поставку мышцам достаточного количества кислорода. Следует учитывать также ограничение внутриклеточной утилизации кислорода креатинфосфатом в первые секунды работы. В беге на 100 м только 5% энергии мышцы получают аэробным путём, часть необходимого для них кислорода извлекается из миоглобинового депо, поступление его из внешней среды незначительно. Кислородный долг составляет около 95% кислородного запроса (абсолютная его величина в ряде случаев достигает 10-12 литров). Около 80% анаэробного энергообразования приходится на долю креатинфосфокиназной реакции, остальное – на долю гликолиза. На первых метрах дистанции действует почти исключительно креатинфосфокиназный процесс. На остальной части дистанции поддержание достигнутой максимальной скорости бега обеспечивается одновременным использованием креатинфосфата и гликогена. Скорость гликолитического распада гликогена в условиях соревнований на эту дистанцию может в 1000 раз увеличиться по сравнению с уровнем покоя. Однако мышечные запасы гликогена не исчерпываются на этой дистанции даже при работе до изнеможения, тогда как концентрация креатинфосфата в этой ситуации может снижаться почти до нуля. При беге на 200 м распад креатинфосфата и анаэробный гликолиз также используются одновременно в энергетике работы, при этом в зависимости от индивидуальных особенностей спортсменов возможно вовлечение креатинфосфата и гликогена в энергетику примерно в одинаковом объёме, в других случаях гликолиз может стать преобладающим анаэробным процессом. Уже на 150-м метре дистанции запасы креатинфосфата в работающих мышцах заметно истощаются и темп бега снижается ~ на 10%. В энергетическом обеспечении бега к этому времени увеличивается роль аэробного метаболизма (до 10 – 20 %).

При беге на дистанции 100 и 200 м в мышцах, а потом и в крови повышается содержание креатина, неорганического фосфата, молочной кислоты. Выход молочной кислоты в кровь происходит в основном после окончания работы. Наивысшие концентрации молочной кислоты в крови наблюдаются в этом случае на 3 –5 минутах восстановительного периода и достигают 10–15 мМоль/л. Отставленный максимум молочной кислоты в крови объясняется не только замедленной диффузией, но и продолжением энергообразования в ходе гликолиза для ресинтеза креатинфосфата.

Несмотря на то, что скорость расходования энергии при беге на 100 и 200 м достигает очень высоких величин, снижение энергетических запасов в мышцах не является главной причиной падения работоспособности: после окончания работы не использованными остаются более половины энергетических источников мышц. Сдвиги во внутренней среде организма также относительно невелики (снижение рН артериальной крови незначительно – до 7, 35 – 7, 30). Кумулятивные биохимические изменения в организме при тренировке, направленной на совершенствование скоростных качеств спринтера, проявляются в накоплении в организме дополнительных запасов креатинфосфата, мышечного гликогена, повышении активности миозина как фермента, ускоряющего гидролиз АТФ, активности гликолитических ферментов, в основном в белых мышечных волокнах, увеличении содержания в мышцах сократительных и кальций связывающих белков.

Основными факторами, ограничивающими скорость бега на дистанции 400 м и способствующими развитию утомления, являются исчерпание ёмкости креатинфосфокиназной системы, существенное снижение гликогенных резервов мышц, накопление предельных концентраций молочной кислоты (в 25 – 30 раз превышающих уровень покоя), сильное закисление внутренней среды организма (рН артериальной крови может снижаться до 7, 0–6, 8 несмотря на буферирование производимых молочной кислотой ионов водорода). В мышцах и крови накапливаются также пировиноградная и фосфорная кислоты, креатин и креатинин. Появление большого количества кислых продуктов оказывает воздействие на проницаемость клеточных мембран. Увеличивается выход в кровь белков – альбуминов и глобулинов – и происходит проникновение их в мочу. Содержание белка в моче тем больше, чем тяжелее переносится организмом эта нагрузка субмаксимальной мощности. Закисление в клетках мозга вызывает падение активности ферментов энергетического обмена и усиление образования гамма-аминомасляной кислоты, входящей в состав «фактора торможения», предотвращающего чрезмерное истощение нервных клеток путём развития охранительного торможения в них. Сама гамма-аминомасляная кислота может выступать как тормозной медиатор, конкурирующий с ацетилхолином.

Преобладание гликолитического процесса в энергетике бега на 400 м приводит к быстрому снижению углеводных резервов мышц, поскольку гликолиз обладает небольшой эффективностью: в энергию АТФ превращается в нём в 12 раз меньшее количество энергии гликогена, чем в аэробном процессе. Транспорт глюкозы, мобилизованной из печени, кровью не может обеспечить компенсации даже одной десятой части затрат мышечного гликогена, хотя сердце работает с максимальным напряжением, а концентрация глюкозы несколько увеличивается по сравнению с уровнем покоя. По мере преодаления дистанции происходит постепенное снижение скорости гликолитического энергообразования не только из-за исчерпания мышечного гликогена, но и из-за падения активности ключевого фермента гликолиза – фосфофруктокиназы.

Продолжительность выхода на дорабочий уровень в содержании расходуемых веществ и продуктов распада после бега на 400 м составляет около 1, 5 – 2 часов. Суперкомпенсация креатинфосфата происходит в те же сроки, что и после более коротких дистанций, суперкомпенсация гликогена наблюдается значительно позднее.

Все тренировочные и соревновательные нагрузки связаны с аэробными и анаэробными процессами обеспечения энергией. При этом анаэробные процессы дополнительно разделяются на гликолитические и фосфагенные (алактатные), где источниками энергии являются креатинфосфат и АТФ. Все упомянутые выше процессы характеризуются максимально возможной интенсивностью протекания или так называемой мощностью, а также своей продолжительностью (емкостью), специфической для отдельных видов энергетического обмена. Так, например, наивысшая алактатная мощность достигается в интервале 3–5 секунд при усилиях наибольшей интенсивности. Однако ее можно удержать максимально в пределах до 10 секунд. В этом случае мы говорим об алактатной-фосфагенной емкости. С нагрузками такого характера мы имеем дело при тренировке скорости, что требует продолжительных интервалов отдыха (до полного восстановления), а также при тренировке собственно-силовых и скоростно – силовых способностей.

Наибольшая гликолитическая мощность, связанная с интенсификацией анаэробного гликолиза, достигает максимума в интервале 20–40 с. Она характеризуется чрезвычайно быстрым расходом энергетических источников в мышцах в единицу времени и значительным приростом концентрации лактата.

Гликолитический энергетический обмен может доминировать при высокой интенсивности нагрузки, от 30 с до 2 мин. В этом случае мы имеем дело с так называемой гликолитической емкостью, которая характеризуется максимальной концентрацией лактата в мышцах, образующегося во время работы.

Эти две характеристики – гликолитическая мощность и емкость – являются важнейшими для энергообеспечения тренировки бегунов на 400 м. Следует отметить, что для дистанции 400 м более важна гликолитическая емкость, а для бега на 200 м – гликолитическая мощность.

При продолжительности интенсивной работы в беге на 400 метров, в течение 1 минуты, преимущественным механизмом образования АТФ является анаэробный гликолиз, относительный энергетический вклад анаэробных механизмов примерно 80%, в то время как вклад аэробных механизмов не превышает 20%. Таким образом, с увеличением продолжительности нагрузки уменьшается доля анаэробных механизмов и увеличивается доля аэробного энергообразования. Однако в условиях соревнований наблюдается максимальное усиление всех систем, обеспечивающих специальную работоспособность, а преобладание одной из систем зависит от продолжительности упражнения.

При беге на 100, 200, 400 и 800 м, а также во время любой другой интенсивной работы, длящейся 2-3 мин, энергообеспечение нагрузки осуществляется в основном анаэробным путем.

При развитии аэробных возможностей бегуны на 400 м должны использовать следующие средства.

1. Кроссовый равномерный бег 8–12 км при ЧСС 160–180 уд/мин. Этот вид бега применяется в начале подготовительного периода, а в дальнейшем – в качестве восстановления после напряженных соревнований или тренировок.

Однако необходимо помнить, что для улучшения функциональных возможностей сердечно-сосудистой системы необходимы нагрузки большого объема, с интенсивностью 70–80% (ЧСС до 180 уд/мин). При использовании таких средств развиваются аэробно-анаэробные возможности организма.

2. Темповой кроссовый бег длительностью 6–10 км, ЧСС 160–180 уд/мин (содержание лактата в крови достигает 60–70 мг%).

3. Кроссовый бег по песчаному грунту 6–8 км, ЧСС равна 170–180 уд/мин.

4. Фартлек, состоящий из различных разновидностей бега, ходьбы и физических упражнений. В последнее время фартлек у бегунов на 400 м приобрел форму интервальной тренировки. Например: 1 мин. быстрого бега плюс 1 мин. медленного, таких повторений в одной серии 3–8, а количество серий 2–6; или 2 мин. быстрого бега плюс 1 мин. медленного., количество повторений и серий варьируется в зависимости от задач этапа и индивидуальных возможностей. Подобных вариаций можно применять достаточно много.

5. Кроссовый бег в переменном темпе длительностью 30–60 мин. Длина ускорений 100–1000 м. Во время ускорений частота пульса составляет 170–200 уд/мин, между ус корениями – 130–150 уд/мин. [25].

Высокие показатели лактата, которые могут появиться во время выполнения интенсивной нагрузки, являются свидетельством несостоятельности аэробной системы. Высокие показатели лактата означают, что в энергообеспечении нагрузки подключилась лактатная система, побочным продуктом которой является молочная кислота. Максимальная концентрация лактата может достигать значений, в 20 раз превышающих таковые во время покоя. Высокая концентрация лактата приводит к мышечной усталости. Если спортсмен начнет свой длительный бег в слишком высоком темпе или если он слишком рано предпримет финишный рывок, концентрация лактата в его организме возрастет до высоких значений. Усталость, которая последует за ростом концентрации лактата, не даст спортсмену выиграть гонку.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...