Эксперимент. Неврологическая регуляция адаптационных процессов. Экперимент
ЭКСПЕРИМЕНТ Интересно отметить, что многочисленные экспериментальные данные (полученные, в частности, в ходе наблюдений за участниками антарктических экспедиции) позволили отечественным психофизиологам отойти от дихотомии " адаптация — дезадаптация" при классификации результирующих моментов адаптационного процесса. Так, Н. Н. Василевский (1984) экспериментально и статистически обосновал существование трех категорий обследуемых, положив в основу своей классификации степень гибкости, пластичности нервных и сомато-вегетативных функций: адаптивные (с высокой пластичностью, перенастраиваемостью на новые условия жизнедеятельности), средней адаптивности (умеренная гибкость нервной системы, соматических реакций в новых условиях) и неадаптивные (низкая преспосабливаемость либо даже отсутствие реактивной динамики при существенных изменениях внешней среды). Неврологическая регуляция адаптационных процессов Весьма продуктивным является подход, позволяющий проследить влияния различных неврологических структур на регуляцию высших форм психического отражения, возникавших на последовательных этапах человеческой эволюции и адаптации. Отталкиваясь от классических работ Н. А. Бернштейна и «накладывая» собственный эмпирический материал по результатам исследований когнитивной сферы, Б. М. Величковский (1999) вводит шесть уровней иерархической регуляции различных процессов перцептивной, сенсомоторной и когнитивной обработки: Уровень Л. Палеокинетические регуляции. Этот самый нижележащий уровень обеспечивает протопатическую чувствительность и базовые защитные реакции. Уровень В. Синергии. На данном уровне осуществляется регуляция ритмических и циклических движений; осознание сводится к проприо- и тангорецепторным ощущениям.
Уровень С. Пространственное поле. Здесь подключаются первичные области коры головного мозга, которые обеспечивают восприятие стабильной и объемной окружающей среды. Уровень D. Предметные действия. На следующем витке эволюции формируются вторичные области неокортекса. В результате становится возможной тренировка перцептивных и моторных навыков высшего порядка в ходе адаптации, память поддерживается перцептивными образами. Уровень Е. Концептуальные структуры. Ассоциативные области коры позволяют идентифицировать объекты л события как элементы порождающих классов, вступать в коммуникации и иметь собственное символическое представление о мире. Уровень F. Метакогнитивные координации. Формирование контрольных областей неокортекса делает возможным личностное и межличностное отношение, рефлексивное сознание и продуктивное воображение. Для нас важным является также тезис о том, что когнитивные и мотивационные механизмы личности тесно переплетаются между собой, что является, по-видимому, результатом коннективистских тенденций в ходе эволюции и адаптации: В связи с предложенной схемой возникает вопрос, ограничивается ли применение такой организации только лишь областью моторного контроля и когнитивной обработки или же она описывает и другие функциональные аспекты регуляции деятельности. Тесное взаимодействие когнитивных и мотивационных переменных — одна из главных особенностей «деятельности» по сравнению с «поведением». Одну из многообещающих перспектив задает то, что эмоции и мотивационные процессы могут и сами быть организованы в виде иерархии (Б. М. Величковский, 1999, с. 8-9).
ЭКПЕРИМЕНТ Экспериментальные данные психофизиологических функций космонавтов (предполетный, полетныйи послеполетный периоды), подвергнутые качественному и количественному анализу С. И. Степановой, позволили прийти к выводу о выраженной ритмической природе этих процессов в ходе адаптации (С. И. Степанова, 1977). Прежде всего это касается выраженной колебательной функции в динамике параметров внимания космонавтов, у которых выделяются колебания уровня бдительности с периодами 2-3 и 30-40 минут (в зависимости от напряженности деятельности, функционального состояния адаптанта и его индивидуально-психологических особенностей). Другой важный вывод из сформулированного закона волнообразностидействия адаптационного процесса заключается в том, что всегда необходимо учитывать, на какую фазу колебания адаптационного процесса приходится то или иное воздействие в изменяющейся внешней среде. Именно учет этой закономерности позволяет объяснить зарегистрированные многочисленные факты, когда воздействия определенного типа (одинаковые по своему составу и интенсивности) на одних этапах адаптации дают выраженную реакцию (или даже целый симптомокомплекс), на других — незначительную (слабую), а на третьих никак себя не проявляют в динамике психофизиологических показателей. Вместе с тем в волнообразной природе адаптивных процессов на психофизиологическом уровне достаточно выражены ритмические составляющие, относящиеся к классу сверхмедленных физиологических процессов (с периодами от нескольких минут до классического суточного ритма), которые достаточно детально исследованы рядом отечественных авторов (Н. А. Аладжалова, 1979; В. А. Илюхина, 1986; М. Н. Ливанов, 1972).
В проведенных нами ранее исследованиях психофизиологических составляющих динамики психомоторной деятельности (простое зрительно-моторное реагирование) и формально-динамических характеристик интеллектуальной деятельности как основных компонентов адаптационного процесса также удалось показать наличие медленноволновых и сверхмедленных составляющих. Выявлено, в частности, существование двух основных диапазонов в колебаниях латентного периода простой зрительно-моторной реакции на предъявляемые через равные интервалы времени стимулы — так называемый младший диапазон реагирования (интервалы подачи стимулов через 1 и 2 секунды) и старший диапазон (интервалы 4, 6, 8 и 10 секунд). В свою очередь, показатели скорости выполнения интеллектуальных действий на двух различных этапах решения задач обнаружили достоверную взаимосвязь с двумя различными биоэлектрическими индикаторами лабильности.
Проинтерпретировать полненные экспериментальные факты оказалось возможным на основе концепции об обеспечении психической деятельности корково-подкорковой структурно-функциональной организацией связей, включающей звенья различной степени жесткости (Н. П. Бехтерева, 1974). Анализ на основе этой концепции таких общих свойств нервной системы, как лабильность и подвижность, предпринятый В. А. Суздалевой, позволил обосновать положение о том, что функционирование жестких звеньев центральной нервной системы обусловливает функциональную лабильность (скорость протекания) нервных процессов. В то же время функционирование гибких звеньев в различных корково-подкорковых структурах головного мозга связано с таким свойством, как подвижность нервной системы, которая лежит в основе психофизиологического обеспечения адаптации индивида к новым условиям протекания различных видов деятельности. Исходя из этого можно предположить, что быстрота установления интеллектуального навыка при решении задач обеспечивается на основе жесткого и устойчивого взаимодействия нейронных ансамблей, тогда как быстрота усмотрения эквивалентности алгоритмов решения предъявляемых задач (то есть легкость объединения алгоритмических процедур в одну когнитивную структуру) связана с более гибким взаимодействием структурно-функциональных образований головного мозга. Отсюда можно сделать вывод о том, что лабильность как общее свойство нервной системы, лежащее в основе процессов адаптации, имеет своим основанием функционирование как жестких, так и более гибких звеньев центральной нервной системы, что, в свою очередь, обусловливает различные скоростные показатели процесса решения задач. С другой стороны, эти же скоростные параметры прохождения отдельных этапов решения интеллектуальных задач обнаружили структурные взаимосвязи (по результатам проведенного факторного анализа) с выраженностью медленноволновой ритмики в латентных периодах простого зрительно-моторного реагирования. Так, увеличение 1, 5-2, 5-минутных колебаний в латентных периодах зрительно-моторных реакции коррелирует с достижением высоких значений скорости установления интеллектуального стереотипа решения, в то время как мощность 14-30-секундных колебаний положительно связана со скоростью возникновения догадки.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|