Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

6.3. Критерий Q Розенбаума («критерий хвостов»).




6. 3. Критерий Q Розенбаума («критерий хвостов»).

Назначение и описание критерия

Критерий используется для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. В каждой из выборок должно быть не менее 11 испытуемых. Это очень простой непараметрический критерий, который позволяет быстро оценить различия между двумя выборками. Однако если критерий  Q не выявляет достоверных различий, это ещё не значит, что их действительно нет.

Критерий применяется в тех случаях, когда данные представлены по крайней мере в порядковой шкале. Признак должен варьировать в каком-то диапазоне значений, иначе сопоставления с помощью Q – критерия просто невозможны. Метод Розенбаума требует, следовательно, достаточно тонко измеренных признаков.

 

Условия применения Q-критерия Розенбаума

1) Измерение может быть проведено в шкале порядка, интервалов и отношений.

2) Выборки должны быть независимыми.

3) В каждой из выборок должно быть не меньше 11 испытуемых.

4) Приведённая в данном пособии таблица ограничивает верхний предел выборки 26 испытуемыми. При числе наблюдений n1 и n2≥ 26 можно пользоваться следующими величинами Qкр = 8 (для Р≤ 0, 05) и Qкр = 10 (для Р≤ 0, 01).

5) Принципиальным условием, дающим возможность применять критерий, является наличие «хвостов». В ином случае критерий оказывается неприменимым.

Алгоритм подсчёта Q-критерия Розенбаума рассмотрим при решении следующей задачи.

 

Пример 6. 2. Используя тест Векслера, психолог определил показатели интеллекта у двух групп учащихся из городской и сельской школы. Его интересует вопрос – будут ли обнаружены статистически значимые различия в показателях интеллекта, если в городской выборке 11 детей, а в сельской 12? Полученные показатели:

- в городской выборке: 96, 104, 120, 120, 126, 134, 130, 120, 120, 104, 100;

- в сельской выборке: 120, 110, 102, 96, 84, 82, 76, 82, 88, 100, 104, 118.

Решение: Решить задачу с помощью критерия Q Розенбаума («критерия хвостов»).

Формулировка гипотез:

Н0: Уровень интеллекта в выборке городских детей не выше, чем в выборке сельских детей.

Н1: Уровень интеллекта в выборке городских детей выше, чем в выборке сельских детей.

Алгоритм подсчёта критерия Q:

1) Расположим числа в порядке возрастания слева направо и одно измерение под другим (верхний ряд – городская школа, нижний – сельская)

Т                      |96, 100, 104, 104, 120, 120, 120, 120| 126, 130, 134

76, 82, 82, 84, 88, |96, 100, 102, 104. 110, 118, 120|   S

Т – левый «хвост», S – правый «хвост»

В этом случае S = 3, T = 5,

2) Подсчитываем Qэмп = S + T = 3 + 5 = 8.

3) Критические значения критерия находим по Таблице 4 для n1 = 11 и n2 = 12:

Qкр1 = 6 (Р ≤ 0, 05) и Qкр2 = 9 (Р ≤ 0, 01).

4) Строим ось значимости. Qэмп  = 8  попало в зону неопределённости.

0, 05 Зона неопределённости    0, 01
6                  8                  9

5) Вывод. На 5% уровне принимается гипотеза H1 о наличии различий. Можно считать достоверным (на 5% уровне), что уровень интеллекта в выборке учащихся городских школ выше, чем в выборке учащихся сельских школ.

 

Вопросы для обсуждения

1. Назовите основные непараметрические критерии для несвязных выборок. Каковы области их применения?

2. Каково назначение U-критерия Манна – Уитни? Каков смысл данного критерия? Какова формулировка статистических гипотез?

3. Каковы условия применения U-критерия Манна – Уитни?

4. Каков алгоритм подсчёта U-критерия Манна – Уитни?

5. Каково назначение критерия Q Розенбаума? Каков смысл данного критерия? Какова формулировка статистических гипотез?

6. Каковы условия применения критерия Q Розенбаума?

7. Каков алгоритм подсчёта критерия Q Розенбаума?

8. Провести сопоставительный анализ критерия Q Розенбаума и U-критерия Манна – Уитни.

 

ТЕМА №7. Критерии согласия распределений.

7. 1. Понятие о критериях согласия.

Критерии согласия распределений – статистические методы, имеющие наиболее широкий спектр решаемых задач по сравнению с критериями различий. Они являются наиболее мощными и, соответственно, более сложными при расчетах.

 

Задачи, решаемые с помощью критериев согласия

1) Расчёт согласия эмпирического и предполагаемого теоретического.

Н0 – отсутствие различий между теоретическим и эмпирическим распределениями.

2) Расчёт однородности двух независимых экспериментальных выборок. Н0 – отсутствие различий между двумя эмпирическими (экспериментальными) распределениями.

В этом случае критерий согласия выступает в роли критерия различий, как параметрического, так и непараметрического.

3) Сравнение показателей внутри одной выборки по двум или более показателям. Н0 – сравниваемые признаки не влияют друг на друга.

В этом случае критерий согласия выступает в роли коэффициента корреляции.

Критерии согласия распределений

1. Критерий хи-квадрат (c2). Измерение может быть проведено в любой шкале. Выборки должны быть случайными и независимыми. Желательно, чтобы объём выборки был не менее 20 (повышается точность критерия). Таблица критических значений критерия хи-квадрат рассчитана для числа степеней свободы ν, которое каждый раз вычисляется по определённым правилам.

 

2. Критерий Колмогорова-Смирнова . Измерение может быть проведено в шкале интервалов и отношений. Выборки – случайные и независимые. Желательно, чтобы суммарный объём двух выборок был не менее 50. Эмпирические данные должны допускать возможность упорядочения по возрастанию или убыванию какого-либо признака (отражать какое-то его однонаправленное изменение).

 

3. Многофункциональный критерий Фишера – φ (Угловое преобразование Фишера). Измерение – в любой шкале. Характеристики выборок – любые. Нижние границы двух выборок должны содержать не меньше 5 элементов (наблюдений) в каждой.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...