Числа и цифры. Сохранение (неизменность) количества и величин. . Основные математические понятия: множество, число, цифра, натуральный ряд чисел, система счисления, счетная, вычислительная, измерительная деятельность, величина, форма, геометрическая фигур
ЧИСЛА И ЦИФРЫ Представления. Обозначение количества числом и цифрой в пределах 5. Количественное и порядковое назначение числа. Обобщение групп предметов, звуков и движений по числу. Связи между числом, цифрой и количеством: чем больше предметов, тем большим числом они обозначаются; сосчитывание как однородных, так и разнородных предметов, в разном расположении и т. д. Познавательные и речевые умения. Сосчитывать, сравнивать по признакам, количеству и числу; воспроизводить количество по образцу и числу; отсчитывать. Называть числа, согласовывать слова-числительные с существительными в роде, числе, падеже. Отражать в речи способ практического действия. Отвечать на вопросы: " Как ты узнал, сколько всего? "; " Что ты узнаешь, если сосчитаешь? " СОХРАНЕНИЕ (НЕИЗМЕННОСТЬ) КОЛИЧЕСТВА И ВЕЛИЧИН. Представления. Независимость количества числа предметов от их расположения в пространстве, сгруппированности. Неизменность размеров, объёма жидких и сыпучих тел, отсутствие или наличие зависимости от формы и размера сосуда. Обобщение по размеру, числу, по уровню наполненности одинаковых по форме сосудов и т. д. Познавательные и речевые умения зрительно воспринимать величины, количества, свойства предметов, сосчитывать, сравнивать с целью доказательства равенства или неравенства. Выражать в речи расположение предметов в пространстве. Пользоваться предлогами и наречиями: справа, сверху, от..., рядом с..., около, в, на, за и др.; пояснить способ сопоставления, обнаружения соответствия. · Выделять основные части группы предметов, определять признаки различия и сходства предметов; · Считать (отсчитывать) в пределах 5;
· Правильно пользоваться количественными и порядковыми числительными, отвечать на вопросы «Сколько? », «Который по счету? »; · Сравнивать множества по количеству, используя практические способы сравнения (приложение и наложение) и счет, обозначая словами больше, меньше, поровну; · Раскладывать предметы разной величины (длины, ширины, высоты) в возрастающем (убывающем) порядке, рассказывать о величине каждого предмета в ряду; · Различать и называть геометрические фигуры (круг, квадрат, треугольник, овал, прямоугольник), геометрические тела (шар, куб); · Находить в окружающей обстановке предметы, похожие на знакомые фигуры. · Различать и правильно называть части суток (утро, день, вечер, ночь); · Ориентироваться во временах года, знать их отличительные особенности; · Различать правую, левую руки; · считать в пределах 10 (прямой и обратный счет); · уменьшать и увеличивать число на 1; · сравнивать числа в пределах 10, называть наименьшее, наибольшее, · уравнивать число предметов; · сравнивать предметы по длине, высоте, ширине, весу; · размещать предметы в порядке возрастания, убывания; · различать цвет и форму предметов; · различать геометрические фигуры; · ориентироваться на листе бумаги · определять направление движения от себя (направо, налево, вперед, назад, вверх, вниз); · решать простейшие логические задачи на анализ, синтез, классификацию, · обобщение.
Основные математические понятия: множество, число, цифра, натуральный ряд чисел, система счисления, счетная, вычислительная, измерительная деятельность, величина, форма, геометрическая фигура, время, пространство.
Методика ФЭМП в системе пед. наук призвана оказать помощь в подготовке детей дошкольного возраста к восприятию и усвоению математики – одного из важнейших предметов в школе и всестороннего развития ребёнка.
Методика ФЭМП имеет специфическую, чисто математическую терминологию. Это: - множество; - число; - счётная и вычислительная деятельность; - величина; - геометрические фигуры; - время; - пространство. МНОЖЕСТВО — это совокупность объектов, которые рассматриваются как единое целое. Мир, в котором живет человек, представлен разнообразными множествами: множество звезд на небе, растений, животных вокруг него, множество разных звуков, частей собственного тела. Множества состоят из элементов. Элементами множества называют объекты, составляющие множества. Это могут быть реальные предметы (вещи, игрушки, рисунки), а также звуки, движения, числа и др. Элементами множества могут быть не только отдельные объекты, но и их совокупности. Например, при счете парами, тройками, десятками. В этих случаях элементами множества выступает не один предмет, а два, три, десять - совокупность. Таким образом, множества рассматривают как набор, совокупность, собрание каких-либо предметов и объектов, объединённых общим, для всех характерным свойством. Всякое свойство можно рассматривать как принадлежность некоторым предметам. Например, свойством быть красным обладают некоторые цветы, ягоды, автомашины и другие предметы. Свойством быть круглым обладают луна, мяч, колеса велосипедов и автомашин, детали различных машин и станков и др. Таким образом, с каждым свойством связывается множество (предметов), обладающих этим свойством. Говорят также, что множество характеризуется данным свойством — или множество задано указанием характеристического свойства. Под характеристическим свойством множества подразумеваются такое свойство, которым обладают все объекты, принадлежащие данному множеству (элементы этого множества), и не обладает ни один предмет, который не принадлежит ему, т. е. этот предмет не является его элементом. Если некоторое множество А задано указанием характеристического свойства Р, то это записывается следующим образом: А = {х | Р(х)} и читается так: «А – множество всех х таких, что х обладает свойством Р», или, короче, «А – множество всех х, обладающих свойством Р». Когда говорят: «множество всех предметов, обладающих свойством Р», имеются в виду те и только те предметы, которые обладают этим свойством.
Таким образом, если множество А задано характеристическим свойством Р, то это означает, что оно состоит из всех предметов, обладающих этим свойством, и только из них. Если какой-нибудь а обладает свойством Р, то он принадлежит множеству А, и, наоборот, если предмет а принадлежит множеству А, то он обладает свойствомР. Некоторым свойством может обладать бесконечное множество предметов, другим — лишь конечное множество. Поэтому множества подразделяются на конечные и бесконечные. Конечное множество может быть задано непосредственным перечислением всех его элементов в произвольном порядке. Например, множество детей данной группы, живущих на Садовой улице, может быть задано описанием с помощью характеристического свойства: {х | х- живет на Садовой улице) или перечислением всех его элементов в произвольном порядке: {Лена, Саша, Витя, Ира, Коля}. Вполне понятно, что бесконечное множество нельзя задать перечислением всех его элементов. Математика в большей мере имеет дело с бесконечными множествами (числа, точки, фигуры и другие объекты), но основные математические идеи и логические структуры могут быть смоделированы на конечных множествах. Естественно, что в предматематической подготовке обычно имеют дело с конечными множествами.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|