Напряжение при чистом изгибе
Рассмотрим наиболее простой случай изгиба, называемый чистым изгибом и выведем формулу для определения нормальных напряжений для данного случая. Отметим, что методами теории упругости можно получить точную зависимость для нормальных напряжений при чистом изгибе, если же решать эту задачу методами сопротивления материалов, необходимо ввести некоторые допущения. Таких гипотез при изгибе три: 1) гипотеза плоских сечений (гипотеза Бернулли). Сечения плоские до деформации остаются плоскими и после деформации, а лишь поворачиваются относительно некоторой линии, которая называется нейтральной осью сечения балки. При этом волокна балки, лежащие с одной стороны от нейтральной оси будут растягиваться, а с другой - сжиматься; волокна, лежащие на нейтральной оси своей длины не изменяют; 2) гипотеза о постоянстве нормальных напряжений - напряжения, действующие на одинаковом расстоянии у от нейтральной оси, постоянны по ширине бруса; 3) гипотеза об отсутствии боковых давлений - соседние продольные волокна не давят друг на друга. Как было отмечено выше, под чистым изгибом понимается такой вид сопротивления, при котором в поперечных сечениях бруса возникают только изгибающие моменты, а поперечные силы равны нулю. Для тех участков бруса, где соблюдается данное условие, изгибающий момент, вдоль продольной оси z принимает постоянное значение. Так как в любом сечении стержня при чистом изгибе
Процесс формирования деформаций при чистом изгибе может рассматриваться как результат поворота плоских поперечных сечений друг относительно друга. Рассмотрим два смежных сечения, отстоящих один от другого на расстоянии В результате изгиба эти сечения наклонятся, образуя между собой угол Рис.6.26
Если предположить, что продольные волокна не давят друг на друга, то каждое из них будет находиться в условиях простого растяжения - сжатия. Тогда переход от деформаций к нормальным напряжениям Рис. 6.27
Установим положение нейтральной оси x, от которой происходит отсчет координаты у (рис.6.27). Учитывая, что сумма элементарных сил
Как известно, последний интеграл представляет собой статический момент сечения относительно нейтральной линии (оси x). Статический момент равен нулю, значит, нейтральная линия проходит через центр тяжести сечения. Выразим момент внутренних сил относительно нейтральной оси
C учетом выражения (2) получим:
Откуда
где Из формулы (3), исключая
Эта формула была впервые получена Ш. Кулоном в 1773 году. Откуда следует, что нормальные напряжения
где Для прямоугольника Для круга Для прокатных профилей (двутавра, швеллера, уголка) Формулой (6) удобно пользоваться для расчета балок пластичного материала в упругой области, одинаково работающего на растяжение и сжатие. Поскольку знак напряжения в этом случае не имеет значения, напряжения вычисляются по модулю, и условие прочности при изгибе балки в форме призматического стержня получает вид
где
При расчете балок из хрупких материалов следует различать наибольшие растягивающие
Из условия (7) формулируют три рода задач на прочность при изгибе: 1) Проверка прочности: задана балка, нагрузка, известен материал. Строится эпюра 2. Определение максимально допустимой нагрузки по условию прочности.
Заданы размеры балки, характер нагрузки, материал балки. Строится эпюра 3. Конструирование балки – определение размеров ее поперечного сечения.
Строится эпюра
Для прямоугольного сечения Обычно задаются отношением Тогда отсюда Задаваясь шириной Для двутаврового сечения по таблице сортамента подбирают номер двутавра с Энергия упругих деформаций бруса при изгибе V определяется работой момента
окончательно получим
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|