Лекция 7. Сложное сопротивление
Сложным сопротивлением называются виды нагружения, при которых в поперечных сечениях одновременно действуют несколько внутренних силовых факторов.
Рис.7.1
Сложный вид деформации можно рассматривать как сумму простых видов, изученных ранее (растяжение, изгиб, кручение), при которых в сечениях элементов конструкций возникал только один внутренний силовой фактор (рис.7.2): нормальная сила N - при растяжении, изгибающий момент Мz - при чистом изгибе, крутящий момент Мx - при кручении. Эти виды нагружения, растяжение, изгиб, кручение, являются простыми.
Рис.7.2
Основные соотношения, полученные для них, приведены в таблице 7.1 Таблица 7.1
Но при сложном сопротивлении должен быть применим принцип независимости действия сил (частный случай принципа суперпозиции или наложения, применяемый в механике деформируемого твердого тела). Напомним формулировку принципа независимости действия сил: напряжение (деформация) от группы сил равно сумме напряжений (деформаций) от каждой силы в отдельности. Он справедлив, если функция и аргумент связаны линейной зависимостью. В задачах механики материалов и конструкций становится неприменимым, если: - напряжения в какой-либо части конструкции от одной из сил или группы сил превышают предел пропорциональности ; - деформации или перемещения становятся настолько большими, что нарушается линейная зависимость между ними и нагрузкой. Например, дифференциальное уравнение изгиба стержня является нелинейным и вытекающая из него зависимость прогиба f от нагрузки Р для консольной балки, изображенной на рис.7.3, а, также является нелинейной (рис.7.3, б). Однако, если прогибы балки невелики () настолько, что (так как ), то дифференциальное уравнение изгиба становится линейным (как видно из рис.7.3, б, начальный участок зависимости Р от f, описываемый этим уравнением, также является линейным).
б) линейное и нелинейное сопротивления
Задачи на сложное сопротивление решаются следующим образом. Определяются напряжения и деформации при действии простейших видов деформации, составляющих сложное сопротивление, а затем полученные результаты суммируют, используя при необходимости теории прочности. На практике одновременное действие всех силовых факторов встречается крайне редко. Чаще приходится иметь дело с более простыми комбинациями нагружений – косой или пространственный изгиб, внецентренное растяжение или сжатие и изгиб с кручением. Расчет балки, подверженной косому или пространственному изгибу Косымназывают изгиб, при котором плоскость действия изгибающего момента, возникающего в сечении, не совпадает ни с одной из главных плоскостей бруса (при этом плоскость действия изгибающего момента обязательно должна проходить через центр тяжести сечения) (рис.7.4). Рис.7.4
При косом изгибе изогнутая ось представляет собой плоскую кривую, и плоскость, в которой она расположена, не совпадает с плоскостью действия нагрузки. При пространственном изгибе нагрузка приложена в разных плоскостях, деформированная ось является пространственной кривой.
Определение внутренних усилий при косом изгибе Рис.7.5
При косом изгибе в поперечных сечениях бруса действуют следующие внутренние усилия: Mz, My – изгибающие моменты и Qy, Qz –поперечные (перерезывающие) силы. Это легко показать мысленно рассекая стержень и определяя внутренние усилия при косом изгибе консольной балки под действием сосредоточенной силы F на свободном конце (см. рис.7.5):
Правило знаков для внутренних усилий: изгибающие моменты – положительны, если вызывают растяжение в положительном квадранте координатной системы zOy; поперечные силы – положительны, если под их действием отсеченный элемент поворачивается по часовой стрелке. Таким образом, косой изгиб может быть представлен как совместное действие двух плоских изгибов в двух взаимно перпендикулярных плоскостях инерции. Для определения полного изгибающего момента M и полной поперечной силы Q при косом изгибе достаточно определить внутренние усилия для каждого из плоских изгибов в отдельности (то есть Qy, Mz и Qz, My), а затем найти их векторную сумму: .
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|