Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

2.3.Участки выпуклости и вогнутости кривой. Общая схема исследование функции и построения ее графика




2. 3. Участки выпуклости и вогнутости кривой. Общая схема исследование функции и построения ее графика

л Построение графика

Непрерывная линия называется выпуклой или обра­щенной выпуклостью вверх на отрезке [а, b], если все точки этой линии ле­жат выше хорды, соединяющей любые две ее точки.

Вогнутой (обращенной выпуклостью вниз) называет­ся линия, проходящая ниже своих хорд.

Замечание. В некоторых руководствах выпуклость и вогнутость иногда определяются противоположным образом.

Точки, отделяющие выпуклые участки линии от вогнутых (и наоборот), называются точками перегиба.

На рисунках проиллюстрирован гео­метрический смысл второй производной, позволяющий по ее знаку судить о том, в какую сторону изгибается линия графика, т. е. справедлива

Теорема. Если вторая произ­водная функции  в данном промежутке значений х положи­тельна:

               (2. 10),

то кривая вогнута в этом промежутке, а если отрицательна:

               (2. 11),

то кривая в этом промежутке выпукла.

Точками перегиба являются те точки, при переходе через которые вторая производная меняет знак.

Линия является выпуклой (или вогнутой ) в точке, если значение ее второй производной в данной точке меньше (или больше) нуля.

 

Пример. 2. 9. Выяснить, выпуклая или вогнутая линия  при .

Решение. Находим производные . В точке  имеем: . Значит, в точке данная линия вогнута.

 

Нахождение точки перегиба. Чтобы исследовать функцию на вогнутость, необходимо опреде­лить знак второй производной. Если на данном промежутке f" (х) < 0 для всех х, то линия вогнута, если f" (х) > 0 для всех х, то линия выпукла. Выпуклую часть кривой от вогнутой отделяет точка перегиба.

Чтобы найти точку перегиба линии :

1. Найти вторую производную функции .

2. Приравняв ее к нулю, решить полученное уравнение.

3. Расположив корни второй производной . в порядке возрастания, подставить в выражение для второй производной сначала лю­бое число, меньшее , затем - любое число ; если получатся разные знаки, то при  имеется точка перегиба; если же одинаковые, то точки перегиба нет; далее аналогично поступить с числами .

4. Найти ординаты точек пе­региба, т. е. найти значения функ­ции в соответствующих точках.

 

Пример 2. 10. Найти точки перегиба линии .

Решение . Находим: .

Разобьем числовую прямую на интервалы: ; .

Определим знак второй производной в каждом из интервалов.

x
- +
выпуклая вогнутая

При переходе через вторая производная меняет знак на противоположный, следовательно, при  линия имеет перегиб.

Ординату точки перегиба определим, подставив  в уравнение линии: Следовательно,  -  точка перегиба.

 

Пример 2. 11. Найти точки пере­гиба линии .

Решение.

 То есть, вторую производную можно разложить на множители:

Разобьем числовую прямую на интервалы:

;

Определим знак второй производной в каждом из интервалов. В результате определим участки выпуклости-вогнутости функции.

x
+ - +
y вогнутая выпуклая вогнутая

При  и имеем - линия вогнута;

 при  имеем - линия выпукла.

Точки   являются точками перегиба (см. рис. )

 

Рассмотрим последовательность выполнения операций при исследовании функции и построении ее графика на следующем примере.

 

Пример 2. 12. Исследуйте функцию и постройте ее график

Решение.

1) Область определения

2) Функция не периодическая

3) Функция общего свойства, то есть не относится ни к четным, ни к нечетным.

3) Области возрастания-убывания.

- функция возрастает;

 - функция убывает.

4) Точки экстремумов:

При  имеем минимум. Для определения значения этого минимума подставим  в уравнение кривой: Таким образом, у графика функции имеется точка минимума с координатами (16; -32).

5) Точки пересечения с осями координат.

 Для определения ординаты точки пересечения с осью  подставим в уравнение кривой . В результате получим: .

Таким образом, график функции пересекает ось при .

Для определения абсциссы точки пересечения с осью  подставим в уравнение кривой . В результате получим:

Таким образом, график функции пересекает ось в двух точках: при  и .

6) Области выпуклости-вогнутости.

 Для определения участков вогнутости решаем неравенство: . Оно справедливо для любого  из области определения. Следовательно, график функции всюду вогнут.

Для определения участков выпуклости решаем неравенство: . Оно не имеет решения. Следовательно, график функции не имеет участков выпуклости.

 

7) Точки перегиба:

Для определения точек перегиба решаем уравнение: . Оно не имеет решения. Следовательно, график функции не имеет точек перегиба.

 

8) Для построения графика функции начертим оси координат и отметим выявленные нами точки: минимума (16; -32) и пересечения с осями координат (0; 0)  и (36; 0), а также области возрастания-убывания функции и ее вогнутости. В р езультате получим график, изображённый на рисунке.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...