а)длину стороны ; б)уравнение стороны ;
. Матрица системы приведена к трапециевидному виду с ненулевыми диагональными элементами. Соответствующая такой матрице система уравнений имеет бесконечно много решений, которые находим, выполняя обратный ход, и записываем в виде общего решения. Для записи общего решения указываем её базисные и свободные неизвестные. Базисный минор матрицы системы, с учётом перестановки местами столбцов, образуют первый и второй столбцы коэффициентов при неизвестных и : . Поэтому выбираем в качестве базисных – неизвестные и , тогда свободными будут неизвестные и . 3б) Выполняем обратный ход метода Гаусса. Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: . Свободным неизвестным придаём разные, произвольные постоянные значения: , , и последовательно из уравнений системы, начиная с последнего, находим значения всех базисных неизвестных: . Тогда общее решение системы запишется в виде: 4б) Выполняем проверку:
Ответ: . в). Решение. 1в) Записываем расширенную матрицу системы: . 2в) Выполняем прямой ход метода Гаусса.
. При выполнении преобразования расширенной матрицы , в преобразованной матрице появилась строка , соответствующая уравнению , которому не удовлетворяет ни один набор значений неизвестных , что говорит о несовместности исходной системы уравнений. Ответ: Система несовместна. 51 – 60. Исследовать квадратичную форму на знакоопределённость (по критерию Сильвестра). а) ; б) Решение. 1а) Записываем матрицу квадратичной формы: . 2а) Проверяем является ли матрица невырожденной. Для этого вычисляем её определитель и проверяем, равен ли он нулю: . Так как , то матрица - невырожденная и, следовательно, для исследования квадратичной формы на знакоопределённость можно применить критерий Сильвестра.
3а) Вычисляем угловые миноры матрицы и делаем вывод о знакоопределённости квадратичной формы: , , . Так как выполняется условие: , , , то по критерию Сильвестра квадратичная форма положительно определена. Ответ: Квадратичная форма положительно определена. 1б) Записываем матрицу квадратичной формы: . 2б) Вычисляем её определитель и проверяем, равен ли он нулю: . Так как , то матрица - невырожденная и, следовательно, для исследования квадратичной формы на знакоопределённость можно применить критерий Сильвестра. 3б) Вычисляем угловые миноры матрицы и делаем вывод о знакоопределённости квадратичной формы: , , . Так как два угловых минора нечётного порядка имеют разные знаки: , , то по критерию Сильвестра квадратичная форма знакопеременна. Ответ: Квадратичная форма знакопеременна.
61 – 70. Даны векторы : ; ; ; . Требуется: а) вычислить скалярное произведение векторов , если , ; б) вычислить векторное произведение векторов ; в) показать, что векторы образуют базис и найти координаты вектора в этом базисе. Решение. 1a). Находимвектор
=. 2а) Находимвектор
=. 3а) Вычисляем скалярное произведениевекторов : . б) Вычисляем векторное произведение векторов :
= 1в) Покажем, что векторы образуют базис . Для этого составим определитель, столбцами которого являются координаты этих векторов и покажем, что он отличен от нуля. . Так как , то векторы образуют базис и, следовательно, вектор единственным образом можно разложить по векторам этого базиса. 2в) Записываем разложение вектора по векторам базиса : или . Коэффициенты разложения , , называют координатами вектора в базисе и записывают: .
3в) Записываем векторное уравнение относительно , , в виде эквивалентной ему системы линейных уравнений: , и находим единственное решение системы, например, по формулам Крамера: , где , , , . Таким образом: , , . Следовательно, разложение имеет вид: или кратко: . Ответ: . 71-80. Даны вершины треугольника : , , Требуется найти: а)длину стороны; б)уравнение стороны;
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|