Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тема: Оценка тесноты связи




1. Самым коротким интервалом изменения коэффициента корреляции для уравнения парной линейной регрессии является …

    [–1; 0]
      [0; 1]
      [–1; 1]
      [–2; 2]

Решение
Коэффициент корреляции для парной линейной регрессии в общем случае изменяется в пределах [–1, 1]. Однако так как значение коэффициента регрессии отрицательное, то и значение коэффициента корреляции для уравнения тоже будет отрицательным, значит, самым коротким интервалом изменения коэффициента корреляции для уравнения парной линейной регрессии будет [–1; 0].

Эконометрика: учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – С. 59.

 

2. Для регрессионной модели вида получена диаграмма

Такое графическое отображение называется …

    полем корреляции
      диаграммой детерминации
      полем детерминации
      коррелограммой

Решение
Графическое отображение совокупности точек с координатами на плоскости для зависимости от называется полем корреляции, или диаграммой рассеяния. Поэтому верный ответ – «полем корреляции».

 


 

3. Коэффициент корреляции парной линейной регрессии нельзя рассчитать по формуле …

   
     
     
     

Решение
Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции Имеются разные модификации формулы линейного коэффициента корреляции, например

Формула расчета является ошибочной.

Эконометрика: учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – С. 59.

Эконометрика: учеб. / под ред. д-ра экон. наук, проф. В.С. Мхитаряна. – М.: Проспект, 2008. С. 10–20.

 


 

4. Для эконометрической модели вида показателем тесноты связи между переменными и является парный коэффициент линейной …

    корреляции
      детерминации
      регрессии
      эластичности

Решение
Заданная регрессионная модель вида – это линейное уравнение парной регрессии, для которого показателем тесноты связи между переменными и является парный коэффициент линейной корреляции.

 


 

5. Самым коротким интервалом изменения показателя множественной корреляции для уравнения множественной линейной регрессии , если известны парные коэффициенты корреляции , является интервал …

    [0,7; 1]
      [0; 1]
      [0,6; 0,7]
      [-љЫ 1]

Решение
Показатель множественной корреляции изменяется в пределах [0; 1]. Однако величина индекса множественной корреляции должна быть больше максимального парного индекса корреляции или равна ему Следовательно, самым коротким интервалом изменения показателя множественной корреляции будет [0,7; 1].

Эконометрика: учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – С. 59.

 

 


 

Тема: Предпосылки МНК, методы их проверки

1. Для обнаружения автокорреляции в остатках используется …

    статистика Дарбина – Уотсона
      тест Уайта
      критерий Гольдфельда – Квандта
      тест Парка

Решение
Для обнаружения автокорреляции остатков используется расчет статистик Дарбина – Уотсона. Тест Уайта, критерий Гольдфельда – Квандта, тест Парка применяются для обнаружения гетероскедастичности остатков.

Эконометрика: учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – С.438–442, 186–197.

Бывшев В.А. Эконометрика: учеб. пособие / В.А. Бывшев. – М.: Финансы и статистика, 2008. – С.268–301.

 


 

2. Значение критерия Дарбина – Уотсона можно приблизительно рассчитать по формуле , где – значение коэффициента автокорреляции остатков модели. Максимальная величина значения будет наблюдаться при ________ автокорреляции остатков.

    отрицательной
      положительной
      нулевой
      бесконечно малой

Решение
Значение коэффициента автокорреляции остатков модели рассчитывается по аналогии с парным коэффициентом автокорреляции и изменяется в таких же пределах, то есть от –1 до +1. Подставим эти граничные значения в формулу для расчета значения критерия Дарбина – Уотсона: если , то ; если , то . Поэтому значение меняется от 0 до 4. Максимальное значение равно 4 для случая, когда , то есть для отрицательной автокорреляции остатков.

Эконометрика: учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – С. 436 – 442.

Бывшев, В.А. Эконометрика: учеб. пособие / В.А. Бывшев. – М.: Финансы и статистика, 2008 – С 189 – 194.

 

 


 

3. Известно, что коэффициент автокорреляции остатков первого порядка равен –0,3. Также даны критические значения статистики Дарбина – Уотсона для заданного количества параметров при неизвестном и количестве наблюдений , . По данным характеристикам можно сделать вывод о том, что …

    автокорреляция остатков отсутствует
      статистика Дарбина – Уотсона попадает в зону неопределенности
      есть положительная автокорреляция остатков
      есть отрицательная автокорреляция остатков

Решение
Дано, что коэффициент автокорреляции остатков первого порядка равен –0,3, . Рассчитаем статистику Дарбина – Уотсона по формуле . Нам известны критические значения статистики Дарбина – Уотсона для заданного количества параметров при неизвестном и количестве наблюдений , , которые разбивают отрезок от 0 до 4 на пять частей.
В интервале [0; 0,82] есть положительная автокорреляция остатков;
в интервале (0,82; 1,32] – зона неопределенности;
в интервале (1,32; 2,68] нет автокорреляции остатков;
в интервале (2,68; 3,12] – зона неопределенности;
в интервале (3,12; 4] есть отрицательная автокорреляция остатков.
В нашем случае значение статистики Дарбина–Уотсона d=2,6 попадает в интервал (1,32; 2,68]. Значит, можно сделать вывод, что нет автокорреляции остатков.
Эконометрика: учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – С.438-442, 186-љЩ7.
Бывшев В.А. Эконометрика: учеб. пособие / В.А. Бывшев. – М.: Финансы и статистика, 2008. – С.268–301.

 

 

4. Значение критерия Дарбина – Уотсона можно приблизительно рассчитать по формуле , где – значение коэффициента автокорреляции остатков модели. Минимальная величина значения будет наблюдаться при ________ автокорреляции остатков.

    положительной
      отрицательной
      нулевой
      бесконечно малой

Решение
Значение коэффициента автокорреляции остатков модели рассчитывается по аналогии с парным коэффициентом автокорреляции и изменяется в таких же пределах, то есть от –1 до +1. Подставим эти граничные значения в формулу для расчета значения критерия Дарбина – Уотсона: если , то ; если , то . Поэтому значение меняется от 0 до 4. Минимальное значение равно 0 для случая, когда , то есть для положительной автокорреляции остатков.

Эконометрика: учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – С. 436 – 442.

Бывшев, В.А. Эконометрика: учеб. пособие / В.А. Бывшев. – М.: Финансы и статистика, 2008 – С 189 – 194.

 


 

5. Из перечисленного условием выполнения предпосылок метода наименьших квадратов не является ____ остатков.

    гетероскедатичность
      случайный характер
      нулевая средняя величина
      отсутствие автокорреляции

Решение
Условия, необходимые для несмещенных, состоятельных и эффективных оценок, представляют собой предпосылки МНК.
Исследования остатков предполагают проверку наличия следующих пяти предпосылок МНК:
– случайный характер остатков;
– нулевая средняя величина остатков, не зависящая от ;
– гомоскедастичность остатков;
– отсутствие автокорреляции остатков;
– подчинение остатков нормальному закону распределения.
Гетероскедатичность остатков не является предпосылкой МНК.

Эконометрика: учеб. / И.И. Елисеева и [др.]; под ред. И.И. Елисеевой. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – С.184–186.

Бывшев В.А. Эконометрика: учеб. пособие / В.А. Бывшев. – М.: Финансы и статистика, 2008. – С.268–301.

 

 

Начало формы


 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...