8.2. Предельные циклы
Проиллюстрируем особенности двумерных моделей неравновесных систем по сравнению с одномерными на примере движения частицы (шарика) по дну круглого желоба с постоянной угловой скоростью ω . Для этого запишем уравнения движения в полярных координатах q1 = r cosφ; q2 = r sinφ, (8. 13) где r – радиус-вектор частицы, φ – полярный угол. Они будут иметь следующую форму: = F(r); φ = ω. (8. 14)
Первое уравнение системы (8. 14) фактически задаётся формой желоба, а второе отражает факт постоянства угловой скорости. Если функция F(r) градиентная, т. е. можно ввести потенциал F(r) = – dV/dt, причём кривая V(r) при вращении вокруг оси (рис. 8. 7) образует поверхность, называемую потенциальной – «рельеф местности», в которой происходит движение частицы. Так как жёлоб имеет круговую форму, то и потенциальная кривая должна быть симметричной относительно оси вращения: Рис. 8. 7. Потенциальная поверхность при движении частицы по кольцевому желобу. Понятно, что какими бы ни были начальные координаты частицы r(0) и φ (0), частица обязательно будет приближаться к стационарной круговой траектории, расположенной на дне жёлоба - это происходит оттого, что жёлоб расположен между двумя склонами (наружным и внутренним). Значит, частица при движении вдоль желоба всегда будет стремиться к минимуму потенциальной энергии, то есть на фазовой плоскости q1 – q2 (рис. 8. 8) траектория движения частицы при любых начальных значениях координат будет иметь спиралеобразную форму:
Рис. 8. 8. Фазовый портрет движения частицы вблизи кольцевого жёлоба: если начальное значение радиус-вектора частицы меньше радиуса кругового желоба r0, то траектория движения частицы будет представлять собой раскручивающуюся спираль, если же r(0) > r0 – то скручивающуюся, при этом в обоих случаях конечной будет круговая (замкнутая) траектория по дну желоба, к которой стекаются все остальные траектории на фазовой плоскости - она носит название устойчивого предельного цикла. Возможен другой вариант функции F(r) (рис. 8. 9), когда потенциальная кривая имеет более сложную форму, а потенциальная поверхность похожа на глубокую симметричную яму, по склону которой проходит неглубокий кольцевой желоб: Рис. 8. 9. Устойчивый и неустойчивый предельные циклы. Если начальный радиус-вектор частицы больше r0, то частица скатится на дно желоба r = r1, которое в этом случае соответствует устойчивому предельному циклу (как и в предыдущем примере). Но если частица в начале движения имеет координату 0 < r(0) < r0, то она скатится на дно ямы - к состоянию устойчивого равновесия. Траектория при точном равенстве r = r0 характеризуется тем, что все соседние траектории от неё удаляются или в сторону дна ямы, или в сторону кругового желоба r = r1. Такая замкнутая траектория, от которой удаляются все соседние траектории, называется неустойчивым предельным циклом. Наряду с особыми траекториями – предельными циклами, которые присущи моделям с двумя переменными, в них присутствуют и особые, критические точки, соответствующие стационарным состояниям: так, точка с координатой r = 0 в обоих рассмотренных примерах функций F(r) является особой, но в первом случае она неустойчива (вершина потенциального холма), во втором – устойчива (дно потенциальной ямы). Поведение системы, находящейся на предельном цикле – это колебательный процесс. Если речь идёт об устойчивом предельном цикле, то амплитуда колебаний не уменьшается со временем - система испытывает самоподдерживающиеся колебания, называемые автоколебаниями. Если в начальный момент времени система находилась на неустойчивом предельном цикле, то частота и амплитуда колебаний со временем меняются. Несложно убедиться, что тип колебательного состояния (фазы) зависит от того, каким способом система попадает на предельный цикл (явление гистерезиса).
Возвращаясь к рис. 8. 7 и рис. 8. 9, можно заметить, что траектории частицы, приводящие на предельный цикл от состояния r = 0, в первом и втором случаях качественно отличаются. Для частицы, находящейся в условиях, соответствующих рис. 8. 7, колебания возникают самопроизвольно: частица, начиная движение в неустойчивой особой точке, сама со временем попадает в жёлоб - чтобы здесь возникло колебательное движение (поскольку в самой особой точке время длится бесконечно долго), достаточно бесконечно малого возмущения (флуктуации). Такое самопроизвольное возбуждение автоколебаний носит название мягкого возбуждения (бытовой пример мягкого возбуждения – механический будильник после того, как его завели). В случае на рис. 8. 9 для перевода частицы из равновесного положения (r = 0) на устойчивый предельный цикл (r = r1) надо преодолеть потенциальный барьер при r = r0, т. е. преодолеть пороговое значение потенциала V(r0) - такой способ перевода системы в автоколебательную фазу называется жестким возбуждением (реализуется в часах-ходиках после подъёма гири, когда прежде надо толкнуть маятник). Реализация того или иного типа возбуждения зависит от вида потенциала V(r) или, что то же самое, от вида функции F(r). Как могут происходить неравновесные (динамические) фазовые переходы в системах, фазовые портреты которых содержат предельные циклы? Будем плавно менять вид функции F(r) так, чтобы глубина жёлоба на склоне ямы стала постепенно уменьшаться, при этом в какой-то момент точки r0 и r1 сольются в одну точку перегиба (рис. 8. 10), то есть произойдёт аннигиляция устойчивого и неустойчивого предельных циклов, которую можно представить бифуркационной схемой: → отсутствие предельного цикла Рис. 8. 10. Слияние (аннигиляция) устойчивого и неустойчивого предельных циклов.
Итак, можно констатировать, что в двумерных динамических моделях, кроме особых точек, характеризующихся неизменностью во времени переменной (концентрации, координаты, численности популяции) и отвечающих стационарным состояниям системы, появляются особые траектории и соответствующие им бифуркации (неравновесные фазовые переходы).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|