Так как начальная скорость в опытах на машине Атвуда обычно равна нулю и движение условно начинается из начала координат, то
. (1.6) Будем называть первое из этих соотношений законом скоростей, а второе законом пе- ремещений. Соотношения (1.6) могут быть проверены экспериментально. Проведение эксперимента Задание 1. Проверка закона скоростей Измерения 1. Проверяют вертикальность установки машины Атвуда. Балансируют грузы. 2. Укрепляют на шкале кольцевую полочку П1. Регулируют ее положение. 3. Накладывают на правый груз перегрузок в 5-6 г. 4. Двигаясь равноускоренно из верхнего положения до кольцевой полочки, правый груз проходит путь S1 за время t1 и приобретает к концу этого движения скорость v (рис. 5). На кольцевой полочке груз сбрасывает перегрузок и дальше движется равномерно со скоростью, которую он приобрел в конце разгона. Для определения ее следует измерить время t2 движения груза на пути S2. Таким образом, каждый опыт состоит из двух измерений: сначала измеряется время равноускоренного движения t1, а затем груз повторно запускается для измерения времени равномерного движения t2. 5. Проводят 5-6 опытов при различных значениях пути S 1 (с шагом 15-20 см). Путь S2 выбирается произвольно. Полученные данные заносят в таблицу 1.1. отчета Обработка результатов. 1. По полученным данным строят график зависимости v = f(t). Точку (t=0, v=0) на графике не откладывают. 2. Если экспериментальные точки ложатся на прямую с небольшим разбросом и прямая проходит через начало координат, то можно сделать вывод о выполнении закона скоростей. 3. Для определения с помощью полученного графика ускорения движения сначала необходимо получить точное уравнение экспериментальной прямой. Для этого применяют метод наименьших квадратов (МНК). Угловой коэффициент прямой, т.е. значение коэффициента k в полученном уравнении, равен ускорению а.
4. По формулам МНК определяют погрешность измерения а. Задание 2. Проверка закона перемещений 1. Снимают с машины кольцевую полочку. 2. На правый груз накладывают перегрузок в 5-6 г. 3. Измеряют время прохождения грузом расстояний в 20, 40, 60 и т.д. см – всего 6-7 опытов. Полученные данные заносят в таблицу 1.2 отчета. 4. Зависимость S = f (t) – квадратичная функция, а ее график – парабола. Однако ее графическая идентификация («узнавание») невозможна. Поэтому строят график зависимости S = f (t 2). Точку (t =0, S =0) на графике не откладывают. Если экспериментальные точки ложатся на прямую с небольшим разбросом и прямая проходит через начало координат, то можно сделать вывод о выполнении закона перемещений. 5. Как и в задании 1 для линеаризации зависимости применяют МНК. С помощью полученного уравнения находят ускорение движения и определяют погрешность его измерения. 6. Зная массы грузов и перегрузка, из формулы (1.4) находят ускорение свободного падения. Учитывая погрешности измерения масс грузов и перегрузка, находят относительную и абсолютную погрешность измерения ускорения свободного падения.
Задание 3. Проверка второго закона Ньютона. Поскольку ускорение движения является функцией двух переменных – силы и массы, то изучение второго закона Ньютона выполняется путем раздельного исследования двух зависимостей: 1) зависимости ускорения от действующей силы при постоянной массе системы и 2) зависимости ускорения от массы системы при постоянной действующей силе. Исследование зависимости ускорения от силы при постоянной массе Измерения и обработка результатов 1. Тщательно балансируют грузы, выбрав их массы в пределах 150 - 200 г каждый.
2. Затем на правый груз последовательно накладывают перегрузки. В результате в системе появляется движущая сила равная D mg, где D m - суммарная масса перегрузков. При этом, конечно, общая масса системы незначительно увеличивается, но этим изменением массы по сравнению с массой грузов можно пренебречь, считая массу системы постоянной. 3. Измеряют время равноускоренного движения системы на пути, например, 1 метр. Все данные заносят в таблицу 1.3 отчета. 4. Пользуясь законом путей (1.6), вычисляют ускорение а. 5. Поводят еще 5-6 опытов, последовательно увеличивая массу перегрузков. 6. Строят график зависимости ускорения движения от действующей силы. Точку (F =0, a =0) на графике не откладывают. Если экспериментальные точки ложатся на прямую с небольшим разбросом и прямая проходит через начало координат, то можно сделать вывод о том, что ускорение действительно прямо пропорционально силе. 7. По угловому коэффициенту полученной прямой определяют массу системы и сравнивают ее реальной массой. Исследование зависимости ускорения от массы при постоянной силе Измерения и обработка результатов 1. Все опыты проводят с одним и тем же перегрузком, т.е. при постоянной действующей силе. Ускорение системы измеряется также как и в предыдущем задании. 2. Для изменения массы системы одновременно на правый и левый груз кладут дополнительные одинаковые грузы. Все данные записывают в таблицу 1.4 отчета. 3. График обратно пропорциональной зависимости ускорения от массы представляет собой гиперболу, которую невозможно идентифицировать. Для проверки предположения об обратно пропорциональной зависимости между ускорением и массой необходимо построить график зависимости ускорения от обратного значения массы системы: a = f (М-1). Подтверждением предположения является прямолинейность этого графика. 4. По угловому коэффициенту полученной прямой определяют значение приложенной силы и сравнивают ее с реально действующей в системе.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|