Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Процессы изменения состояния идеального газа




Процессы изменения состояния идеального газа

При изучении процессов изменения состояния идеальных газов, наряду с общими соотношениями по расчету термодинамических
процессов (1. 67) – (1. 113), следует использовать уравнение Клапейрона (1. 23)
и закон Джоуля (1. 51), в соответствии с которыми для идеального газа справедливы следующие выражения:

 

если , то ;                              (1. 114)

;                              (1. 115)

;                                         (1. 116)

.                                          (1. 117)

 

Из уравнений (1. 114)¸ (1. 117) следует, что для идеального газа процессы изопотенциальный (pv =idem), изотермический (T = idem), изоэнергетический (u= idem) и изоэнталыпийный (h = idem) тождественны и, следовательно, показатели этих процеcсов равны

 

.                                 (1. 118)

 

Характеристика расширения или сжатия процессов, в которых рабочим телом является идеальный газ, с учетом уравнения Клапейрона может быть определена по соотношению температур

 

= .                                     (1. 119)

 

Изменения удельных значений внутренней энергии и энтальпии идеального газа в процессе в соответствии с законом Джоуля находится по следующим формулам:

 

;                                      (1. 120)

.                                    (1. 121)

 

Показатель адиабатного процесса для идеального газа определяется как соотношение изобарной и изохорной теплоемкостей

 

k = ns =  =  =  = .                    (1. 122)

 

На основании закона Майера ( ) показатель адиабаты для идеального газа может быть определен из следующего соотношения:

 

k =  =  > 1.                              (1. 123)

 

Для идеального газа показатель изоэнергетического процесса  и поэтому удельное количество теплоты в элементарном процессе может быть определено по формуле

 

.                                        (1. 124)

 

На примере идеального газа произведем анализ термодинамических процессов (рис. 1. 9).

Адиабата ( ) является линией перемены знака теплообмена. При расширении газа термодинамическая работа  и тогда любая политропа, расположенная правее адиабаты (n < k), находится в области подвода теплоты ( q > 0). Если политропа расширения будет находиться слева от адиабаты (n > k), то этот процесс будет характеризоваться отводом теплоты ( q < 0).

Таким образом, все термодинамические процессы, проходящие выше адиабаты осуществляются с подводом теплоты и наоборот.

 

Пары и парообразование

Процесс парообразования. Основные определения

При анализе режимов работы теплосиловых установок практически всегда приходиться иметь дело с разного рода жидкостями и их парами.

Процесс парообразования и методика определения основных характеристик процесса парообразования для всех жидкостей практически аналогичны, что дает возможность рассматривать процесс парообразования на примере воды, как одного из наиболее распространенных веществ в природе.

Рассмотрим изобарный процесс парообразования 1 кг воды в
координатах р – v (рис. 1. 21).

В исходном состоянии ( ) вода представляет из себя недогретую жидкость, имеет температуру ( ), значение которой ниже температуры насыщения ( ), а давление воды в этой точке равно р1. В результате изобарного подвода теплоты в процессе ( - ) вода нагревается до температуры насыщения ts1 и в токе ( ) начинается процесс кипения.

 

Рис. 1. 21. Диаграмма состояний водяного пара в координатах p-v

 

Процесс кипения протекает на участке а'- а" при постоянном давлении р1 и постоянной температуре ts1. В точке (а" ) вода полностью испаряется. Пар в этом состоянии называется сухим насыщенным. На участке (а'-а" ) вода находится в двух фазах и состоит из смеси кипящей воды и сухого насыщенного пара. Эта двухфазная равновесная система называется влажным насыщенным  паром. При дальнейшем изобарном подводе теплоты сухой насыщенный пар превращается в перегретый (а). Перегретый пар имеет температуру выше температуры кипения (насыщения) при данном давлении. В состоянии (а) параметры перегретого пара имеют следующие
значения: р1, tа > ts1, va.

Аналогичные процессы изобарного подвода теплоты к воде можно провести при других давлениях р2, р3, и т. д. Соответствующие процессы изображаются линиями b0 -b'-b" -b и с0- с'-с" -с. Точки, характеризующие состояния кипящей воды и сухого насыщенного пара при различных давлениях, соединяются плавными линиями.

Линия a'-b'-с' показывает зависимость удельного объема кипящей воды от давления насыщения  = f(p). Эта линия называется нижней пограничной кривой.

Точки на линии a" -b" -с" характеризуют состояние сухого насыщенного пара, а кривая определяет зависимость удельного объема сухого пара от давления  = f(p) и называется верхней  пограничной кривой. Пограничные кривые пересекаются в точке (К), называемой критической.

Параметры и функции состояния кипящей воды на нижней пограничной кривой линии насыщения обозначаются одним штрихом, а сухого насыщенного пара - двумя штрихами. Для однозначного определения состояния кипящей воды и сухого насыщенного пара достаточно знание давления р или температуры насыщения ts, по значению которых в термодинамических таблицах водяного пара можно найти свойства кипящей воды - v', u', h', s' и сухого насыщенного пара - v", u", h", s" .

В области между пограничными кривыми находится влажный насыщенный пар. Каждой температуре насыщенного пара соответствует определенное давление, то есть между этими параметрами существует однозначная зависимость .

Для характеристики влажного насыщенного пара, помимо р или ts, в качестве второй независимой переменной используется массовая концентрация сухого насыщенного пара в смеси, называемая степенью сухости или паросодержанием ( )

 

,                                       (1. 217)

 

где G" – масса сухого насыщенного пара;  – масса кипящей жидкости;
G – масса влажного насыщенного пара.

На нижней пограничной кривой , а на верхней .

Отношение массы кипящей жидкости к массе смеси (влажного насыщенного пара) называется влагосодержанием

 

.                                   (1. 218)

 

Количество теплоты, которое необходимо подвести при постоянном давлении к 1 кг кипящей жидкости для превращения ее в сухой насыщенный пар, называется скрытой теплотой парообразования и обозначается символом r . Значение скрытой теплоты парообразования (r) можно определить из математического выражения первого начала термодинамики

 

.                       (1. 219)

 

Так как процесс парообразования протекает при постоянном давлении ( ), скрытая теплота парообразования может быть определена из следующего соотношения:

 

.                                  (1. 220)

 

С ростом давления или температуры кипения (насыщения) жидкостей величина скрытой теплоты парообразования  уменьшается и в критической точке становятся равными нулю.

Свойства влажного насыщенного и перегретого пара

Влажный насыщенный пар является бинарной смесью. Свойства влажного насыщенного пара зависят от давления, при котором он находится, от концентраций жидкой и парообразной фаз в системе, которые определяются значением паросодержания .

Известно, что объем , внутренняя энергия , энтальпия  и энтропия  системы являются экстенсивными функциями, значения которых зависят от массы вещества ( ). Обозначим любую экстенсивную функцию , а ее удельное значение . Тогда .

Для вычисления экстенсивной характеристики системы - влажного насыщенного пара, воспользуемся правилом аддитивности

 

,                                          (1. 221)

 

где  и  – экстенсивные характеристики кипящей воды и сухого насыщенного пара.

Выразим экстенсивные характеристики через соответствующие удельные величины и после их подстановки в уравнение (1221) получим

 

.                                      (1. 222)

Разделим члены уравнения (1. 222) на массу влажного насыщенного пара  и, с учетом соотношений (1. 217), (1. 218), получим выражение для определения удельных значений характеристик влажного насыщенного пара

 

.                    (1. 223)

 

С помощью соотношения (1. 223) можно записать соотношения для определения основных параметров и удельных значений функций состояния влажного насыщенного пара (удельного объема, внутренней энергии, энтальпии и энтропии):

 

;                                      (1. 224)

 

;                                     (1. 225)

 

;                               (1. 226)

 

.                            (1. 227)

 

Энтальпия, энтропия и внутренняя энергия перегретого пара определяются из уравнений приращения этих параметров в изобарическом процессе перегрева. В связи с тем, что перегретый пар по своим свойствам близок к идеальному газу, для изобарного процесса перегрева сухого насыщенного пара с некоторой долей приближения справедливы следующие соотношения:

 

; .                                  (1. 228)

 

После интегрирования соотношений (1. 228) от температуры насыщения Тs до температуры перегретого пара Т, получаем систему выражений для определения удельных значений функций состояния перегретого пара:

 

;                                       (1. 229)

 

 

;                            (1. 230)

 

 

,                                            (1. 231)

 

где , – удельные значения энтальпии и энтропии сухого насыщенного пара; сpm,  – первая и вторая средние удельные теплоемкости перегретого пара в интервале температур Т-Тs; v – удельный объем перегретого пара;
 – степень перегрева.

Область перегретого пара заключена между критической изобарой и верхней пограничной кривой ( ) (рис. 1. 22).

 

Рис. 1. 22. Диаграмма состояния h-s водяного пара

 

Характеристики перегретых паров различных веществ v, h, s, u, сp и сv приводятся в термодинамических таблицах водяного пара в функции от давления и температуры.

При проведении термодинамических расчетов, наряду с аналитическими методами, достаточно часто используются и графические методы расчета, проводимые с использованием энтропийных диаграмм (Т - s и h - s). На этих диаграммах (рис. 1. 22) обычно нанесены линии нижней пограничной кривой (x=0), верхней пограничной кривой (х=1), изобары (p=idem), изохоры (v=idem), изотермы (T=idem) и линии постоянной степени сухости (x=idem).

В области влажного насыщенного пара изобары и изотермы совпадают друг с другом, так как . При переходе в область перегретого пара изобары и изотермы разделяются и каждая представляет собой отдельную кривую. В области влажного насыщенного пара изобары и изотермы изображаются в диаграмме Т- s в виде горизонтальных прямых, а в диаграмме h - s – в виде наклонных прямых.

Наибольший практический интерес из этих диаграмм имеет диаграмма h - s прежде всего в силу того, что удельная работа ( ) в адиабатном процессе, исходя из первого начала термодинамики, по этой диаграмме определяется как величина отрезка между начальными и конечными точками процесса (h1 – h2).

В энтропийных диаграммах Т - s и h - s обратимые адиабатные (изоэнтропийные) процессы изображаются вертикальными отрезками.

Диаграмма Т - s, в основном, пользуется для термодинамического анализа различных циклов. Она позволяет по соответствующим площадям определить количество теплоты, подведенного и отведенного к рабочему телу в рассматриваемом цикле и работу цикла. При расчете процессов, в которых имеет место процесс парообразования, а рабочими телами являются различные вещества, преимущественно используется диаграмма h - s.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...